Specific Process Knowledge/Lithography/UVLithography: Difference between revisions

From LabAdviser
Taran (talk | contribs)
Jehan (talk | contribs)
No edit summary
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/UVLithography click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/UVLithography click here]'''


[[Image:UVLithography.jpg|320x320px|right|frame|]]
[[Image:UVLithography.jpg|320x320px|right|]]


UV Lithography uses ultraviolet light to transfer a pattern from a photo-mask or a design file to a wafer coated with photoresist. The photoresist film is spin coated onto the wafers, the design is transferred to the resist by using an aligner, and subsequently the resist pattern is developed. DTU Nanolab houses a number of automatic or manual coaters, mask or maskless aligners, as well as automatic or semi-automatic developers.
UV Lithography uses ultraviolet light to transfer a pattern from a photo-mask or a design file to a wafer coated with photoresist. The photoresist film is spin coated onto the wafers, the design is transferred to the resist by using an aligner, and subsequently the resist pattern is developed. DTU Nanolab houses a number of automatic or manual coaters, mask or maskless aligners, as well as automatic or semi-automatic developers.

Revision as of 16:00, 29 November 2022

Feedback to this page: click here

UV Lithography uses ultraviolet light to transfer a pattern from a photo-mask or a design file to a wafer coated with photoresist. The photoresist film is spin coated onto the wafers, the design is transferred to the resist by using an aligner, and subsequently the resist pattern is developed. DTU Nanolab houses a number of automatic or manual coaters, mask or maskless aligners, as well as automatic or semi-automatic developers.

Getting started

Before you plan your UV processing and request for training on any equipment in UV lithography, please go through the following steps. Include the information in the training request.

Also, please remember that the Lithography Tool Package Training is mandatory before training in any lithography equipment.

If you are new to photolithography, you can visit this wikipedia webpage about photolithography before you start.

  • Prepare a process flow which describes all steps in your UV lithography process. You can find docx-templates in this table.
  • Design device: Design your device and layout. A detailed instruction on how to design a layout (mask) can be found here.
  • Substrate pretreatment: In many processes it is recommended to pretreat or prime your wafer before spin-coating. In some spin-coaters, these pretreatment processes are included in the spin coating of resist.
  • Resist Type: Choose the type of resist you wish to use: a list of UV lithography resist types available at DTU Nanolab can be found on this page.
    • Positive tone resist: Resist exposed to UV light will be dissolved in the developer. The mask openings are an exact copy of the resist pattern which is to remain on the wafer.
    • Negative tone resist: Resist exposed to UV light will become polymerized and difficult to dissolve. The mask openings are an inverse copy of the resist pattern which is to remain on the wafer.
  • Thickness of resist: In general, it is recommended to work at or below an aspect ratio of ~1, i.e. where the width of the pattern is larger than the thickness of the resist. Furthermore, when you decide the resist thickness, consider which transfer you need:
    • For lift-off processes, we recommend resist thickness at least 5 times larger than the thickness of the metal to be lifted.
    • For dry etch or wet etch processes, investigate the resist etch rate of your process as this might limit the minimum thickness of your resist.
  • Spin Coater: Do you wish to use a manual spin coater or an automatic spin coater? See a list of spin coaters here.
  • Exposure: Choose which aligner you wish to use, and consider the exposure dose.
    • You can find a list of mask aligners and maskless aligners here.
    • You can find information on dose here.
  • Mask: If you wish to use a mask aligner, order a photomask for your UV process. Instructions on how to order a photomask can be found here.
  • Development: Choose which equipment you wish to use to develop your photoresist from this list. Remember the development process influences the exposure dose.
  • Specify whether you wish to strip or lift-off your resist: strip and lift-off.


Resist Overview

Resist Polarity Spectral sensitivity Manufacturer Comments Technical reports Spin Coating Exposure Developer Rinse Remover Process flows (in docx-format)
AZ 5214E Positive but the image can be reversed 310 - 420 nm Merck KGaA

Supplied by MicroChemicals GmbH

Can be used for both positive and image reversed (negative) processes with resist thickness between 1 and 4 µm. AZ5214E.pdf‎

Photoresist AZ® 5214 E (TDS)

Automatic spin coater (Gamma UV or Gamma e-beam & UV)

Manual spin coater (LabSpin or RCD8)

Mask aligner (KS or MA6 - 2)

Maskless aligner (01, 02 or 03)

AZ 351B developer

or

AZ 726 MIF developer

DI water Acetone or Remover 1165

Mask aligner: Process_Flow_AZ5214_pos.docx‎ Process_Flow_AZ5214_rev.docx‎

Maskless aligner: Process_Flow_AZ5214_MLA_pos.docx‎ Process_Flow_AZ5214_MLA_rev.docx‎

AZ 4562 Positive 310 - 440 nm Merck KGaA

Supplied by MicroChemicals GmbH

For process with resist thickness between 6 and 25 µm. AZ4500.pdf‎

Photoresist AZ® 4562 (TDS)

Automatic spin coater (Gamma e-beam & UV)

Manual spin coater (LabSpin or RCD8)

Mask aligner (KS or MA6 - 2)

Maskless aligner (01 or 03)

AZ 351B developer

or

AZ 726 MIF developer

DI water Acetone or Remover 1165

Mask aligner: Process_Flow_thick_AZ4562.docx‎

Maskless aligner: Process_Flow_thick_AZ4562_MLA.docx‎

AZ MiR 701 Positive 310 - 445 nm Merck KGaA

Supplied by MicroChemicals GmbH

High selectivity for dry etch.

Resist thickness 1.5 - 4 µm.

AZ_MiR_701.pdf‎

Photoresist AZ® MIR 701 (TDS)

Automatic spin coater (Gamma UV or Gamma e-beam & UV)

Manual spin coater (LabSpin or RCD8)

Mask aligner (KS or MA6 - 2)

Maskless aligner (01, 02 or 03)

AZ 726 MIF developer DI water Acetone or Remover 1165

Mask aligner: Process_Flow_AZ_MiR701.docx‎

Maskless aligner: Process_Flow_AZ_MiR701_MLA.docx‎

AZ nLOF 2020 Negative 310 - 380 nm Merck KGaA

Supplied by MicroChemicals GmbH

Negative sidewalls for lift-off.

Resist thickness 1.5 - 4 µm.

AZ_nLOF_2020.pdf‎

Photoresist AZ®nLOF 2020 (TDS)

Automatic spin coater (Gamma UV)

Manual spin coater (LabSpin or RCD8)

Mask aligner (KS or MA6 - 2)

Maskless aligner (01 or 02)

AZ 726 MIF developer DI water Remover 1165

Mask aligner: Process_Flow_AZ_nLOF_2020.docx‎

Maskless aligner: Process_Flow_AZ_nLOF_2020_MLA.docx‎

SU-8 Negative 350 - 400 nm Kayaku Advanced Materials, Inc.

Supplied by micro resist technology GmbH

High aspect ratio.

Resist thickness 1 µm to several 100 µm.

SU-8_DataSheet_2005.pdf‎, SU-8_DataSheet_2075.pdf‎ Manual spin coater (LabSpin or RCD8)

Mask aligner (KS or MA6 - 2)

Maskless aligner (01 or 02)

mr-Dev 600 developer (PGMEA) IPA Cured SU-8 is practically insoluble.

Plasma ashing can remove crosslinked SU-8.

Process_Flow_SU8_70um.docx‎

Most of the process knowledge on SU-8 is based in research groups


Other process flows


Process information

Pretreatment

Coaters

UV Exposure

Information on UV Exposure Dose

Baking

Development

Descum

Stripping Resist

Lift-off

Information from our suppliers

Application notes from MicroChemicals GmbH, e.g. Lithography Trouble-Shooter