Specific Process Knowledge/Thermal Process/C1 Furnace Anneal-oxide

From LabAdviser

Feedback to this page: click here

This page is written by DTU Nanolab internal


Anneal-oxide furnace (C1)

Anneal-oxide furnace (C1). Positioned in cleanroom B-1/ Photo: DTU Nanolab internal

The Anneal-oxide furnace (C1) is a Tempress horizontal furnace for oxidation and annealing of silicon wafers. Both 100 mm and 150 mm wafers can be processed in the furnace.

The Anneal-oxide furnace is the top furnace tube in the C-stack furnaces, which positioned in cleanroom B-1. Most of wafers have to be RCA cleaned, before they enter the furnace. The only exceptions are brand new wafers, wafers from the A-stack furnaces, wafers from the LPCVD furnaces (B- and E-stack furnaces) and wafers from PECVD4. Please check the cross contamination information in LabManager, before you use the furnace.

Oxygen is used as oxidant for dry oxidation, and for wet oxidation wafer vapour generated by a steamer is used as oxidant. The oxidation recipes on the furnace are named e.g. "WET1000" and "DRY1000", where "WET" or "DRY" indicates whether it is a wet or dry oxidation process, and the number indicates the oxidation temperature.

Annealing can be done for silicon wafers with layers of e.g. silicon oxide, silicon nitride, polysilicon or BPSG glass (deposited in PECVD4). The annealing recipes are named e.g. "ANN1000" (for annealing at 1000 oC).

The oxidation and annealing temperature can be up to 1100 oC.


The user manual, technical information and contact information can be found in LabManager:

Anneal-oxide furnace (C1)

Process knowledge

  • General information about oxidation. More information can be found on the oxidation page
  • Wet oxidation in the C1 furnace. More information can be found here
  • Dry oxidation in the C1 furnace. More information can be found here
  • Annealing. More information can be found on the annealing page

Overview of the performance of Anneal Oxide furnace and some process related parameters

Purpose
  • Oxidation of 100 mm and 150 mm wafers
  • Annealing of 100 mm and 150 mm wafers

Annealing:

  • Using N2

Oxidation:

  • Dry oxidation using O2
  • Wet oxidation using H2O vapour generated by a RASIRC steamer
Performance Film thickness
  • Dry SiO2: ~ 0 nm to 300 nm (it takes too long to grow a thicker dry oxide layers)
  • Wet SiO2: ~ 0 nm to 3 µm (23 hours wet oxidation at 1100 oC)
Process parameter range Process Temperature
  • 800-1100 oC
Process pressure
  • 1 atm (no vacuum)
Gas flows
  • N2: 0-10 slm
  • O2: 0-10 slm
  • Steamer flow : 0-25 liter/minute
Substrates Batch size
  • 1-30 100 mm or 150 mm wafers (or 50 mm wafers)
Substrate materials allowed
  • New silicon wafers
  • Silicon wafers with layers of silicon oxide or silicon nitride (RCA cleaned)
  • Wafers from the LPCVD furnaces
  • Wafers from PECVD4