Specific Process Knowledge/Etch/KOH Etch

From LabAdviser

Feedback to this page: click here

Si etch - Anisotropic silicon etch

KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.

KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si3N4- or SiO2-masking materials and the potassium contamination of the surface. The latter necessitates in most cases a wet post-clean ('7-up' or RCA-clean) if the wafer is to be processed further.

At DTU Nanolab we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO2-mask - is depending on the temperature. We normally use T=80 oC but may choose to reduce this to e.g. 60 oC or 70 oC in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 oC (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch. Etching with IPA added to the KOH solution (250ml IPA/1000ml KOH) can be done in KOH fumehood.


The user manuals, quality control procedures and results, user APVs, technical information and contact information can be found in LabManager:


Si Etch 1: KOH info page in LabManager,

Si Etch 2: KOH info page in LabManager,

Si Etch 3: KOH info page in LabManager

Process Information

KOH etching baths

Key facts for the different etch baths available at DTU Nanolab are resumed in the table:


Equipment Si Etch 01: KOH Si Etch 02: KOH Si Etch 03: KOH
Purpose
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH

The bath is dedicated wafer with electroplated Nickel or otherwise dirty wafers

Link to safety APV and KBA
Performance Etch rates in crystalline silicon (100)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
Etch rates in crystalline silicon (110)
  • 2.5 µm/min (80 °C)
  • 2.5 µm/min (80 °C)
  • 2.5 µm/min (80 °C)
Etch rates in Thermal SiO2
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 6 nm/min (80 °C)
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 6 nm/min (80 °C)
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 6 nm/min (80 °C)
Etch rates in other oxides

.

yannickseis@nbi.ku nov. 2017 @80 °C:

  • BPSG from PECVD4: 311nm in about 3 min
  • Waveguide oxide from PECVD4: 320nm etched in 26 min
  • TEOS oxide from furnace: 300nm etched in 11 min

jemafh@nilt 2019-Marts:

  • Standard from PECVD3: selectivity 1:100 to Si

.

Etch rates in SiN
Roughness
  • Typical: 100-600 Å
  • Typical: 100-600 Å
  • May be high due to contamination and poor controlled concentration of the KOH solution
Anisotropy
  • The etch rate is very dependent on the crystal orientation of the silicon.
  • The etch rate is very dependent on the crystal orientation of the silicon.
  • The etch rate is very dependent on the crystal orientation of the silicon.
Process parameter range Chemical solution
  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 500 g : 1000 ml, when using pills KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 500 g : 1000 ml, when using pills KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

  • Custom made
Temperature
  • Max 80 °C (standard etch)
  • Max 80 °C
  • Max 80 °C
Substrates Batch size
  • 1-25 wafers at a time
  • 1-25 wafers at a time
  • 1-7 wafers at a time
Size of substrate
  • 4”-6" wafers
  • 4”-6" wafers
  • 2” wafers
  • 4” wafers
  • 6” wafers
  • Small pieces
Allowed materials
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • All except for Polymers
Masking material
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2

1 Measured by Eric Jensen from DTU-Nanotech, October 2013.