Specific Process Knowledge/Thin film deposition/Deposition of Chromium: Difference between revisions
No edit summary |
|||
Line 27: | Line 27: | ||
|-style="background:silver; color:black" | |-style="background:silver; color:black" | ||
! | ! | ||
! E-beam evaporation ([[Specific Process Knowledge/Thin film deposition/Temescal|Temescal]]) | ! E-beam evaporation E-beam evaporation ([[Specific Process Knowledge/Thin film deposition/Temescal|E-beam evaporator (Temescal)]] and [[Specific Process Knowledge/Thin film deposition/10-pocket e-beam evaporator|E-beam evaporator (10-pockets)]]) | ||
! E-beam evaporation and sputter deposition ([[Specific Process Knowledge/Thin film deposition/Wordentec|Wordentec]]) | ! E-beam evaporation and sputter deposition ([[Specific Process Knowledge/Thin film deposition/Wordentec|Wordentec]]) | ||
! Thermal evaporation ([[Specific Process Knowledge/Thin film deposition/thermalevaporator|Thermal evaporator]]) | ! Thermal evaporation ([[Specific Process Knowledge/Thin film deposition/thermalevaporator|Thermal evaporator]]) | ||
Line 43: | Line 43: | ||
|-style="background:LightGrey; color:black" | |-style="background:LightGrey; color:black" | ||
! Pre-clean | ! Pre-clean | ||
|Ar ion | |Ar ion gun (only in E-beam evaporator Temescal) | ||
|RF Ar clean | |RF Ar clean | ||
| | | | ||
Line 59: | Line 59: | ||
|-style="background:LightGrey; color:black" | |-style="background:LightGrey; color:black" | ||
! Deposition rate | ! Deposition rate | ||
| | |1 Å/s to 10 Å/s | ||
| | |1 Å/s to 10 Å/s (e-beam) | ||
Sputtering: Depends on process parameters. See [[Specific Process Knowledge/Thin film deposition/Deposition of Chromium/Sputtering of Cr in Wordentec|here]] and process log. | Sputtering: Depends on process parameters. See [[Specific Process Knowledge/Thin film deposition/Deposition of Chromium/Sputtering of Cr in Wordentec|here]] and process log. | ||
|1 Å/s | |1 Å/s | ||
Line 95: | Line 95: | ||
|- | |- | ||
|-style="background:LightGrey; color:black" | |-style="background:LightGrey; color:black" | ||
! Allowed | ! Allowed materials | ||
| | | | ||
Almost any that does not degas. See the [http://labmanager.dtu.dk/function.php?module=XcMachineaction&view=edit&MachID=511 cross-contamination sheet]. | |||
| | |||
Almost any that does not degas. See the [http://labmanager.dtu.dk/function.php?module=XcMachineaction&view=edit&MachID=167 cross-contamination sheet]. | |||
| | | | ||
Almost any that does not degas. See the [http://labmanager.dtu.dk/function.php?module=XcMachineaction&view=edit&MachID=404 cross-contamination sheet]. | |||
| | | | ||
* Silicon wafers | * Silicon wafers | ||
* | * and almost any | ||
| | | | ||
* | *Almost that does not degas - see cross contamination sheets for [http://labmanager.dtu.dk/function.php?module=XcMachineaction&view=edit&MachID=441 PC1] and [http://labmanager.dtu.dk/function.php?module=XcMachineaction&view=edit&MachID=442 PC3] | ||
* Special carrier for III-V materials. | |||
* | |||
|- | |- | ||
|-style="background:WhiteSmoke; color:black" | |-style="background:WhiteSmoke; color:black" | ||
! Comment | ! Comment | ||
| Takes approx. 20 min to pump down | | Takes approx. 20 min to pump down | ||
Line 158: | Line 123: | ||
|} | |} | ||
'''*''' ''For thicknesses above | '''*''' ''For thicknesses above 300 nm, please request permission from metal@nanolab.dtu.dk to ensure there is enough material.'' |
Revision as of 14:23, 19 January 2024
Feedback to this page: click here
Unless otherwise stated, this page is written by DTU Nanolab internal
Studies of Cr deposition processes
Uniformity of Cr layers - Uniformity of Cr layers deposited with different methods and settings
Sputtering of Cr in Wordentec - Settings and deposition rates
Sputtering of Cr in Sputter system (Lesker) - Settings and deposition rates
Sputtering of Cr in Sputter-system Metal-Oxide (PC1) - Settings and deposition rates
Sputtering of Cr in Sputter-system Metal-Nitride (PC3) - Settings and deposition rates
Thermal evaporation of Cr in Thermal evaporator - Settings and deposition results
Stress in sputtered Cr films - Extremely high tensile stress in Cr films deposited at high temperature
Chromium deposition
Chromium can be deposited by e-beam evaporation, thermal evaporation, and sputter deposition. It should be noted that in e-beam evaporation, chromium does not melt but evaporates directly from the solid phase. In the chart below you can compare the different deposition equipment. Further down you will find the results of some studies on chromium deposition.
E-beam evaporation E-beam evaporation (E-beam evaporator (Temescal) and E-beam evaporator (10-pockets)) | E-beam evaporation and sputter deposition (Wordentec) | Thermal evaporation (Thermal evaporator) | Sputter deposition (Lesker sputterer) | Sputter deposition ((Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3)) ) | |
---|---|---|---|---|---|
General description | E-beam deposition of Chromium | E-beam and sputter deposition of Chromium | Thermal deposition of Chromium | Sputter deposition of Chromium | Sputter deposition of Chromium |
Pre-clean | Ar ion gun (only in E-beam evaporator Temescal) | RF Ar clean | RF Ar clean | RF Ar clean | |
Layer thickness | 10Å to 1µm* | 10Å to 1µm* | 80 nm | at least up to 200 nm | at least up to 200 nm |
Deposition rate | 1 Å/s to 10 Å/s | 1 Å/s to 10 Å/s (e-beam)
Sputtering: Depends on process parameters. See here and process log. |
1 Å/s | Depends on process parameters. At least up to 1.48 Å/s. See process log. | Depends on process parameters. |
Batch size |
|
|
|
|
|
Allowed materials |
Almost any that does not degas. See the cross-contamination sheet. |
Almost any that does not degas. See the cross-contamination sheet. |
Almost any that does not degas. See the cross-contamination sheet. |
|
|
Comment | Takes approx. 20 min to pump down | Takes approx. 1 hour to pump down | Takes approx. 20 min to pump down | Takes approx. 5 min to pump down load lock and 6 min for transfer to processing chamber |
* For thicknesses above 300 nm, please request permission from metal@nanolab.dtu.dk to ensure there is enough material.