Specific Process Knowledge/Thin film deposition/Deposition of Chromium/Thermal evaporation of Cr in Thermal evaporator

From LabAdviser
Jump to navigation Jump to search

Feedback to this page: click here


This page is written by Evgeniy Shkondin @DTU Nanolab if nothing else is stated.
All images and photos on this page belongs to DTU Nanolab.
The fabrication and characterization described below were conducted in 2020 by Evgeniy Shkondin. The shield design was developed by Henrik Nielsen (Nanolab, ThinFilm), and build by Nanolab Facility service.


Thermal evaporation of Chromium

Chromium can be thermally evaporated in the Thermal Evaporator (NANO 36 THERMAL EVAPORATOR SYSTEM). At DTU Nanolab, we use dedicated 4" long chromium plated tungsten rods (supplier: KJLC). During power ramp up, the material warms up and sublimates. Unlike deposition of Al and Ag, where simple crucibles are used with point-source evaporation from bottom to the substrate, the deposition of chromium proceeds in all directions. To prevent the deposition on the side-walls and the bottom of the chamber a specific protecting shield is mounted beneath the tungsten rod.


The shield design was developed by Henrik Nielsen (Nanolab, ThinFilm), and build by Nanolab Facility service. The process was developed and tested by Evgeniy Shkondin (Nanolab, ThinFilm) in december 2020.


Set-up installation

The deposition of Chromium requires a major change of the tool hardware installation. Ask Nanolab responsible employee if you need to perform this change.

Recipe and process performance

Deposition rate (Å/s) 1*
Maximum Thickness 100 nm**
Film Tooling 173 %
Density 7.2 g/cm3
Z-factor 0.305

* The deposition rate can be increased (up to 2Å/s or even 5 Å/s), but it requires a new recipe.

**Although it is possible to deposit 100 nm, we do not recommend exceeding the thickness setpoint above 80 nm, due to instabilities at the end.


Deposition of 100 nm

The adjusted tooling factor 173%. Full 6" wafer is loaded with shadow-mask. Deposition thickness setpoint is set to 100 nm.

Pressure fluctuations during the ramp-up:

  • Rise 1 phase @ 0-15W: 4.4 10-6 Torr → 6.2 10-6 Torr
  • Soak 1 phase @ 15W: 6.2 10-6 Torr → 10-5 Torr → 6.5 10-6 Torr
  • Rise 2 phase @ 15-24W: 6.5 10-6 Torr → 1.3 10-5 Torr → 1.6 10-6 Torr
  • Soak 2 phase @ 24W: 1.6 10-6 Torr → 1.8 10-6 Torr


Pressure (Torr) Deposition rate (Å/s) Output power (W) Deposited thickness (nm) Comment
2.3 10-6 1.0 24.5 0 fine
9.2 10-7 0.97 25 10 fine
8.8 10-7 0.98 25.6 20 fine
9.9 10-7 0.98 26.0 30 fine
1.2 10-6 0.99 26.3 40 fine
1.3 10-6 1.0 26.6 50 fine
1.4 10-6 0.99 26.7 60 fine
1.4 10-6 0.99 26.8 70 fine
1.4 10-6 1.03 26.6 80 fine
1.6 10-6 0.97 25.7 90 Cr retraction starts from the center point of the rod
2.5 10-6 1.02 27.4 100 (10% opened area) Pressure fluctuates a little the last 10 nm.



Figure 8. Thickness distribution across 6" wafer. Measurement is performed using Dektak profilometer.


At the end of the lifetime (deposition in the range of 80-100nm at the given rate and set-up conditions) the Cr starts to detract from the tungsten rod leaving an empty area that illuminates a very bright light. It is not always that the retraction begins from the middle, there are cases where it starts from one of the edges. In such a case, the deposition is a bit unstable in terms of measured power and pressure.


The limited amount of chromium, the nature of deposition (in all directions) and retruction sets a limit on how thick layer can be deposited. We do not recomend to exeed the thickness above 80 nm, and do not allow thicknesses above 100 nm.

Note! Remember to discard the used tungsten rods. Never reinstall them. Always mount a new source.

Film characterisation

Full 6" wafer is loaded for film characterization. Measured base pressure before start 4.4 10-6 Torr. Waited 1 hour before start. Deposition thickness setpoint is set to 100 nm. The prepared sample was cleaved into small pieces for characterization.

X-ray reflectivity method

XRR measurements for Cr film has been performed using Rigaku XRD SmartLab diffractometer.


The following model is selected for XRR fitting: Native chromium oxide, bulk chromium layer, native silicon oxide, and the bulk silicon substrate. Fitting results presented in the table.


Layer name Thickness (nm) Density (g/cm3) Roughness (nm)
CrOx 4.636 4.95362 3.107
Cr

101.6

6.38 2.5
SiO2 1.02 2.19147 0.5
Si 2.33 0.02



In-Plane X-ray diffraction

In-Plane diffraction spectrum acquired with Rigaku XRD SmartLab diffractometer. Incident angle o IS=0.1mm, RS1=RS2=open. Scan speed: 1o/min.

The diffraction pattern reveal a polycrystalline film with a strong <111> orientation peak.

X-ray photoelectron spectroscopy

XPS profiles for Cr films has been obtained using XPS K-Alpha equipment.


SEM and AFM

SEM and AFM measurements illustrate surface morphology and roughness.