Specific Process Knowledge/Etch/ICP Metal Etcher: Difference between revisions

From LabAdviser
Jmli (talk | contribs)
No edit summary
Jmli (talk | contribs)
Line 30: Line 30:
*[[Specific Process Knowledge/Etch/ICP Metal Etcher/silicon nitride|Etch of silicon nitride]]
*[[Specific Process Knowledge/Etch/ICP Metal Etcher/silicon nitride|Etch of silicon nitride]]
*[[Specific Process Knowledge/Etch/Titanium Oxide/ICP metal|Etch of Titanium Oxide]]
*[[Specific Process Knowledge/Etch/Titanium Oxide/ICP metal|Etch of Titanium Oxide]]
*[[Specific Process Knowledge/Etch/Aluminum Oxide/Al2O3 Etch with ICP Metal|Al2O3 Etch]]
*[[Specific Process Knowledge/Etch/Aluminum Oxide/Al2O3 Etch with ICP Metal|Al<sub>2</sub>O<sub>3</sub> Etch]]


==An overview of the performance of the ICP Metal Etcher and some process related parameters==
==An overview of the performance of the ICP Metal Etcher and some process related parameters==

Revision as of 10:05, 9 August 2022

Feedback to this page: click here

The ICP Metal Etcher

The SPTS ICP Metal Etcher in the DTU Nanolab cleanroom B-1

Name: PRO ICP
Vendor: STS (now SPTS)
The ICP Metal Etcher allows you to dry etch a small set of metals that includes aluminium, titanium, chromium, titanium tungsten and molybdenum (along with the related oxides and nitrides). It is, despite its name, strictly forbidden to etch (or expose to plasma) other metals. In order to do so use the IBE/IBSD Ionfab 300.

The user manual, user APV and contact information can be found in LabManager:

Equipment info in LabManager

Process information

Standard recipes

Other etch recipes

An overview of the performance of the ICP Metal Etcher and some process related parameters

Purpose Dry etch of
  • Metals such as aluminium, chromium and titanium and the related oxides and nitrides
  • Metals such as molybdenum, tungsten, titanium tungsten
Performance Etch rates
  • Aluminium : ~350 nm/min (depending on features size and etch load)
Anisotropy
  • Good
Process parameter range Process pressure
  • ~0.1-95 mTorr
Gas flows
SF6: 0-100 sccm O2: 0-100 sccm
C4F8: 0-100 sccm Ar: 0-300 sccm
CF4: 0-100 sccm H2: 0-30 sccm
CH4: not working BCl3: 0-90 sccm
Cl2: 0-100 sccm HBr: 0-100 sccm
Substrates Batch size
  • 1 6" wafer per run
  • 1 4" wafer per run
  • 1 2" wafer per run
  • Or several smaller pieces on a carrier wafer
Substrate material allowed
  • Silicon wafers
    • with layers of silicon oxide or silicon (oxy)nitride
  • Quartz wafers
Possible masking material
  • Photoresist/e-beam resist
  • PolySilicon, Silicon oxide or silicon (oxy)nitride
  • Aluminium, titanium or chromium