Jump to content

LabAdviser/Technology Research/Fabrication of Hyperbolic Metamaterials using Atomic Layer Deposition/TiO2 Q plates: Difference between revisions

Eves (talk | contribs)
Bghe (talk | contribs)
No edit summary
Line 1: Line 1:
====Procces flow description====
====Procces flow description====


A 500 μm-thick wafer of silica (SiO<sub>2</sub>) goes through RCA clean and low-pressure chemical vapor deposition (LPCVD) (furnace from Tempress) based on SiH<sub>4</sub> (silane) at 560<sup>◦</sup>C to form a layer of 300 nm of amorphous silicon (Si) [Fig. 1]. The back side of deposited Si was etched using KOH wet etch. In order to remove residues from the etching process, it was performed oxygen plasma cleaning. A CSAR resist was spin-coated to the thickness of 150 nm, followed by exposure of Electron Beam Lithography (EBL) (JEOL JBX-9500 Electron-beam) generating a mask with concentric ring patterns. After development, the wafer was submitted to advanced silicon etch (ASE). To form the trenches of the TiO<sub>2</sub> structures, a thin film of TiO<sub>2</sub> was deposited using the ALD technique in a hot-wall system (Picosun R200), working with 2000 cycles at 150<sup>◦</sup>C [Fig.1]. The precursors used were titanium tetrachloride (TiCl<sub>4</sub>) and H<sub>2</sub>O (supplied by Strem Chemicals Equipment). The process was followed by Ar<sup>+</sup> ion beam etching (IBE) on both sides of the wafer to remove excess of ALD deposited material. At the top most TiO<sub>2</sub> layer the physical sputtering of the sample using Ar<sup>+</sup> ions was performed in order to get access to Si core. On the backside, the Ar<sup>+</sup> ions were used to remove the deposited TiO<sub>2</sub>. Finally, we performed a reactive ion etch on silicon, leaving only the TiO<sub>2</sub> structures. The final system comprehends a base of SiO<sub>2</sub> with nano-structures of TiO<sub>2</sub> on it. Figure 2 shows the image of the system taken using scanning electron microscope (SEM) and conventional optical microscope. Figure 3 illustrates SEM cross-sectional image of the prepared Q-plate.
A 500 μm thick wafer of silica (SiO<sub>2</sub>) goes through RCA clean and low-pressure chemical vapor deposition (LPCVD) (furnace from Tempress) based on SiH<sub>4</sub> (silane) at 560<sup>◦</sup>C to form a layer of 300 nm of amorphous silicon (Si) [Fig. 1]. The back side of deposited Si was etched using KOH wet etch. In order to remove residues from the etching process, it was performed oxygen plasma cleaning. A CSAR resist was spin-coated to the thickness of 150 nm, followed by exposure of Electron Beam Lithography (EBL) (JEOL JBX-9500 Electron-beam) generating a mask with concentric ring patterns. After development, the wafer was submitted to advanced silicon etch (ASE). To form the trenches of the TiO<sub>2</sub> structures, a thin film of TiO<sub>2</sub> was deposited using the ALD technique in a hot-wall system (Picosun R200), working with 2000 cycles at 150<sup>◦</sup>C [Fig.1]. The precursors used were titanium tetrachloride (TiCl<sub>4</sub>) and H<sub>2</sub>O (supplied by Strem Chemicals Equipment). The process was followed by Ar<sup>+</sup> ion beam etching (IBE) on both sides of the wafer to remove excess of ALD deposited material. At the top most TiO<sub>2</sub> layer the physical sputtering of the sample using Ar<sup>+</sup> ions was performed in order to get access to Si core. On the backside, the Ar<sup>+</sup> ions were used to remove the deposited TiO<sub>2</sub>. Finally, we performed a reactive ion etch on silicon, leaving only the TiO<sub>2</sub> structures. The final system comprehends a base of SiO<sub>2</sub> with nano-structures of TiO<sub>2</sub> on it. Figure 2 shows the image of the system taken using scanning electron microscope (SEM) and conventional optical microscope. Figure 3 illustrates SEM cross-sectional image of the prepared Q-plate.