Specific Process Knowledge/Thin film deposition/Electroplating-Ni: Difference between revisions

From LabAdviser
Bghe (talk | contribs)
No edit summary
Bghe (talk | contribs)
No edit summary
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:CustomerSupport@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Thin_film_deposition/Electroplating-Ni click here]'''
'''Feedback to this page''': '''[mailto:CustomerSupport@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Thin_film_deposition/Electroplating-Ni click here]'''


[[Category: Equipment]]
[[Category: Equipment|Electroplating Ni]]
[[Category: Thin Film Deposition]]
[[Category: Thin Film Deposition|Electroplating Ni]]


== Technotrans microform.200 ==
== Technotrans microform.200 ==

Revision as of 13:19, 25 August 2014

Feedback to this page: click here

Technotrans microform.200

Electroplating-Ni positioned in cleanroom A-1

The Technotrans microform.200 (Electroplating-Ni in LabManager) is a machine capable of depositing nickel electrochemically. This is done by lowering the sample into an electrolyte containing nickel ions and then apply a voltage across the sample and the anode. The anode is a basket filled with nickel pellets. The cathode is the sample to be coated with nickel.

At the anode metallic nickel is oxidized to nickel ions:

Ni (s) ⇒ Ni2+ (aq) + 2 e-

At the cathode (the sample surface), nickel ions from solution are reduced to metallic nickel:

Ni2+ (aq) + 2 e- ⇒ Ni (s)

The minimal charge accepted by the software on the machine is 0.1 Ah (Ampere-hours). This corresponds to roughly 2 µm of nickel on a four inch wafer. You can abort a program prematurely to achieve even lower thicknesses, but this requires manual control of the machine.

The maximum allowed thickness is ~1,4 mm (1400 µm), since a higher thickness will make the release of the sample difficult and likely damage the sample holder. This corresponds to a charge of 53-54 Ah on a four inch wafer.

The plating bath is an aqueous solution of nickel sulfamate, boric acid and sulfamic acid. The bath is moderately acidic (pH = 3,5 - 3,8) and the temperature of the bath is around 52°C. The sample will spin at 60 RPM during deposition.

Uniformity across a 4" wafer is around 5% for the standard processes (the edge being slightly thicker than the center of the sample). Running at high current densities will deposit a nickel layer that is quite soft. Decreasing current density will increase tensile strength of the deposited nickel.


The user manual(s), quality control procedure(s) and results, user APV(s), technical information and contact information can be found in LabManager:


Electroplating-Ni Info on LabManager

Process information

Equipment performance and process related parameters

Parameter Value
Sample dimensions Diameter

50, 100 or 150 mm (~ 2", 4" or 6")

Sample thickness

Maximum 1,0 mm

Process parameters Temperature

52*C

pH

3,5 - 3,8

Sample requirements Seed metal

100 nm of either NiV, Ti+Au or Cr+Au recommended. Most commonly seed metals are sputtered using the Sputter-System(Lesker).

Allowed materials

Most materials allowed. See below.

Forbidden materials

Copper, cobalt. See machine manual on LabManager for details


Equipment Electroplating-Ni
Purpose

Electrochemical deposition of nickel

Performance Thickness

0 - 1400 µm

Uniformity

Around 10% (depending on sample and process)

Process parameter range Temperature

52*C

pH

3,5 - 4,0 (3,5 - 3,8 recommended by manufacturer)

Substrates Batch size
  • # 1 x 50 mm wafer
  • # 1 x 100 mm wafer
  • # 1 x 150 mm wafer
  • Maximum sample thickness: 1,0 mm
Allowed materials
  • Most materials except copper and cobalt.
  • Ask Danchip for details.