Specific Process Knowledge/Back-end processing/Laser Micromachining Tool: Difference between revisions
Line 24: | Line 24: | ||
The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc. | The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc. | ||
It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching. | It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching. | ||
The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info [[Specific Process Knowledge/Lithography/Mask_Design| here]]. | |||
== Process information [[Image:section under construction.jpg|70px]] == | == Process information [[Image:section under construction.jpg|70px]] == |
Revision as of 11:20, 3 February 2014
Feedback to this page: click here
Laser Micromachining Tool
The Laser Micromachining Tool is a microSTRUCT vario from the company 3D-Micromac AG.
The machine is located in the basement of building 346 under the cleanroom.
The user manual(s), user APV(s), technical information and contact information can be found in LabManager: [1]
It is equipped with 2 high power lasers:
- a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this article: [2] )
- and a
- a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series).
The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc. It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching.
The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info here.
Process information
- Silicon cutting and milling
- Borofloat glass cutting and milling
- Quartz cutting and milling
- Nickel cutting and milling (for Polymer Injection Molder)
- Mask making
Laser Processing details
Material | Optics | Frequency | Intensity | Power measured @10% | Writing speed | Number of burst | Number of Z-offset | Number of iteration | Number of parallel lines | Gap in between line | Parameter file | Comments |
Silicon 525µm | Green(532nm/255mm) | 200 kHz | 100% | 0,57 W | 50 mm/s | 1 burst | none | 4 | 1 | N/A | Silicon dicing green parameters | Easily break silicon in cristal plan. Depth of the groove : 25µm |
Silicon (525µm) + Si3N4 (150nm to 1,2µm) OR SiO2 (150nm to 320nm) | Red (1064nm/255mm) | 200 kHz | 100% | 2,8 W | 1000 mm/s | 3 bursts | 1 (-0,3mm) | 350/100 | 4 | 50 µm | Silicon nitride cutting parameters | Samples can easily be removed with a soft mechanical pressure. A layer of resist can be deposited on the top without influenced the dicing. Thicker layers (oxyde or nitride) have not been tested. |
Nickel (320µm) | Green(532nm/255mm) | 200 kHz | 100% | 0,64 W | 300 mm/s | 3 burst | none | 4320 | 1 | N/A | Cutting Ni 320µm parameters | Cutting through only blue tape left |
Pyrex (1000µm) | Red(1064nm/255mm) | 200 kHz | 100% | 2,8 W | 1000 mm/s | 1 burst | none | 99 | 13 | 20 µm | Cutting Pyrex 1000µm for microfluidic hole parameters | Increase/decrease the number of iteration to increase/decrease the width of the hole. Microscope view of the chanel |
Pyrex/Borosilicate glass (525µm) | Red(1064nm/255mm) | 200 kHz | 100% | 2,96 W | 1000 mm/s | 1 burst | 4 (-0,1/-0,2/-0,3/-0,4mm) | 300/500/700/900/1200 | 4 | 20 µm | Cutting Pyrex 525µm parameters | Cutting through. Dicing circle. |
Steel (50µm) | Red(532nm/255mm) | 200 kHz | 100% | 0,55 W | 50 mm/s | 1 burst | 0 | 22 | Cutting steel 50µm | Cutting shrim for Injection molder. | ||
Steel (100µm) | Red(532nm/255mm) | 200 kHz | 100% | 0,55 W | 50 mm/s | 1 burst | 0 | 22 | Cutting steel 50µm | Cutting shrim for Injection molder. | ||
Steel (200µm) | Red(532nm/255mm) | 200 kHz | 100% | 0,55 W | 50 mm/s | 1 burst | 0 | 50 | Cutting steel 200µm | Cutting shrim for Injection molder. |
The parameter filename extension is here set to .xls because of MediaWiki restrictions. The 3DMM laser software uses .par as parameter file extension. The file should be a pure text-file with no formatting codes etc.