Specific Process Knowledge/Thin film deposition/Furnace LPCVD PolySilicon: Difference between revisions

From LabAdviser
Paphol (talk | contribs)
No edit summary
Pevo (talk | contribs)
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 24: Line 24:


'''[http://www.labmanager.dtu.dk/function.php?module=Machine&view=view&mach=291 6" LPCVD polysilicon furnace (E2)]'''
'''[http://www.labmanager.dtu.dk/function.php?module=Machine&view=view&mach=291 6" LPCVD polysilicon furnace (E2)]'''
'''[https://labmanager.dtu.dk/d4Show.php?id=1926 Furnace computer manual]'''





Latest revision as of 13:18, 26 June 2023

Feedback to this page: click here

Unless otherwise stated, this page is written by DTU Nanolab internal


Deposition of silicon using LPCVD

4" polysilicon furnace (B4) located in cleanroom B-1
6" polysilicon furnace located (E2) in cleanroom E-6

DTU Nanolab has two furnaces for deposition of LPCVD (Low Chemical Vapour Deposition) silicon: A 6" furnace (installed in 2011) for deposition of standard polySi, amorphous Si and boron doped polySi on 100 mm or 150 mm wafers and a 4" furnace (installed in 1995) for deposition of standard polySi, amorphous Si, boron- and phosphorous doped polySi on 100 mm wafers. In LabManager the two furnaces are named "Furnace: LPCVD Poly-Si (4") (B4)" and "Furnace: LPCVD Poly-Si (6") (E2)", respectively. Both furnaces are Tempress horizontal furnaces.

The LPCVD silicon deposition is a batch process, where silicon is deposited on a batch of 25 or 50 wafers (6" polySi furnace) or 30 wafers (4" polySi furnace). The silicon has a good step coverage, and especially for standard polySi the film thickness is very uniform over the wafers.

The reactive gas is silane (SiH4). The dopant for boron doped polySi is BCl3 - only available at request (6" polySi furnace) or B2H6 (4" polySi furnace), and for phosphorous doped polySi the dopant is PH3 (4" polySi furnace). For standard and doped polysilion the deposition takes place at a temperature of 600 oC - 620 oC and a pressure of 200-250 mTorr. For amorphous silicon the deposition temperature is lower, and thus the deposition rate is also lower. For phosphorus doped polySi the deposition rate is approximately ten times lower than for standard and boron doped polySi. Please check the cross contamination information in LabManager before you use any of the two furnaces.


The user manuals, quality control procedures and results, technical information and contact information can be found in LabManager:

4" LPCVD polysilicon furnace (B4)

6" LPCVD polysilicon furnace (E2)

Furnace computer manual


Manual for the furnace computer to the A, B, C and E stack furnaces

The A, B, C and E stack furnaces can be controlled either from a touch screen by each furnace or from a furnace computer. The user manual for the furnace computer can be found here:

Manual for furnace computers for the A, B, C and E stack furnaces

Process information



Overview of the performance of the LPCVD polysilicon processes and some process related parameters

Equipment 4" LPCVD polysilicon furnace (B4) 6" LPCVD polysilicon furnace (E2)
Purpose Deposition of
  • Standard polySi
  • Amorphous polySi
  • Boron doped polySi (B2H6 dopant)
  • Phosphorus doped polySi (PH3 dopant)
  • Standard polySi
  • Amorphous polySi
  • Boron doped polySi (BCl3 dopant)
Performance Step coverage
  • Very Good
  • Very good
Film quality
  • Deposition on both sides of the substrate
  • Good uniformity over the wafer
  • Deposition on both sides of the substrate
  • Good uniformity over the wafer
Process parameter range Process Temperature
  • Standard polySi: 620 oC
  • Amorphous polySi: 560-580 oC
  • Boron doped a-Si: 580 oC
  • Phosphorus doped a-Si: 580 oC
  • Boron doped polySi: 620 oC
  • Phosphorus doped polySi: 620 oC
  • Standard polySi: 620 oC
  • Amorphous polySi: 560-580 oC
  • Boron doped polySi: 600-620 oC

The process temperature vary over the furnace tube

Process pressure
  • 200-250 mTorr
  • 150-220 mTorr

The process pressure depends on the process

Gas flows
  • SiH4: 80 sccm
  • B2H6: 7 sccm
  • PH3: 7 sccm
  • SiH4: 50-70 sccm
  • BCl3: 1 sccm

The silane (SiH4) flow depends on the process

Substrates Batch size
  • 1-30 100 mm wafers

Including a testwafer with ~110 nm oxide

  • 1-25 or 1-50 100 mm wafers
  • 1-25 or 1-50 150 mm wafers

Including a testwafer with ~110 nm oxide

Substrate materials allowed
  • Silicon wafers (new or RCA cleaned)
    • with layers of silicon oxide or silicon (oxy)nitride
    • from the A, B and E stack furnaces
  • Quartz/fused silica wafers (RCA cleaned)
  • Silicon wafers (new or RCA cleaned)
    • with layers of silicon oxide or silicon (oxy)nitride
    • from the A, B and E stack furnaces
  • Quartz/fused silica wafers (RCA cleaned)


Rules for storage and RCA cleaning of wafers to the B4 and E2 furnaces