Specific Process Knowledge/Characterization/AFM: Atomic Force Microscopy/AFM Icon Acceptance: Difference between revisions

From LabAdviser
Bghe (talk | contribs)
Bghe (talk | contribs)
No edit summary
 
(56 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:labadviser@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/AFM:_Atomic_Force_Microscopy/AFM_Icon_Acceptance click here]'''  
'''Feedback to this page''': '''[mailto:labadviser@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/AFM:_Atomic_Force_Microscopy/AFM_Icon_Acceptance click here]'''  


=AFM Icon 1 accessories and acceptance test=
''This page has been made by Berit Herstrøm @ DTU Nanolab''
==Accessories following the system [[Image:section under construction.jpg|70px]] ==
==Accessories following the systems ==
{| border="2" cellspacing="0" cellpadding="2"  
{| border="2" cellspacing="0" cellpadding="2" valign="top"


!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
!border="none" style="background:silver; color:black;" align="center"|Equipment  
|style="background:WhiteSmoke; color:black"|<b>AFM Icon</b>
|style="background:WhiteSmoke; color:black"|<b>AFM Icon</b>
|style="background:WhiteSmoke; color:black"|<b>AFM Icon 2</b>
|style="background:WhiteSmoke; color:black"|<b>AFM Icon 2 </b>


|-
|-
!style="background:silver; color:black;" align="left"|Position
!style="background:silver; color:black;" align="left"|Chucks
|style="background:LightGrey; color:black"|
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Inside the cleanroom
*A symmetric chuck that handles up to 210mm wafers and 15mm thick
|style="background:WhiteSmoke; color:black"|
*An asymmetric chuck that handles up to ~4" wafer (but not small pieces) - using this a whole 4" can be accessed without rotating the sample.
In the basement of building 346
|style="background:WhiteSmoke; color:black" valign="top"|
*A symmetric chuck that handles up to 210mm wafers and 15mm thick
|-
|-
!style="background:silver; color:black;" align="left"|Purpose
!style="background:silver; color:black;" align="left"|Holders
|style="background:LightGrey; color:black"|Topografic measurement in the nanometer and and sub-micrometer regime and electrical and mechanical measurements
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Surface roughness measurement
*Magnetic sample holder + magnetic discs + double sided tape
*Step/structure hight measurement
*Holder for vertical profile scans
*Surface image
*Surface potential
*Modulus
*Adhesion
*Deformation
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Surface roughness measurement
*Magnetic sample holder + magnetic discs + double sided tape
*Step/structure hight measurement
*Holder for vertical profile scans ?
*Surface image


|-
|-
!style="background:silver; color:black" align="left"|Performance
!style="background:silver; color:black" align="left"|Modes included
|style="background:LightGrey; color:black"|Scan range xy
|style="background:WhiteSmoke; color:black"|Up to 90 µm square
|style="background:WhiteSmoke; color:black"|Up to 90 µm square
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Scan range z
|style="background:WhiteSmoke; color:black"| Up to 13µm
|style="background:WhiteSmoke; color:black"| Up to 13µm
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Vertical noise floor
|style="background:WhiteSmoke; color:black"|<30pm RMS
|style="background:WhiteSmoke; color:black"|<30pm RMS
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|X-Y position noise (closed loop)
|style="background:WhiteSmoke; color:black"|<0.15nm RMS
|style="background:WhiteSmoke; color:black"|<0.15nm RMS
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Z sensor noise level(closed loop)
|style="background:WhiteSmoke; color:black"|35pm RMS
|style="background:WhiteSmoke; color:black"|35pm RMS
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Integral nonlinearity(X-Y-Z)
|style="background:WhiteSmoke; color:black"|<0.5%
|style="background:WhiteSmoke; color:black"|<0.5%
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|X-Y position noise (closed loop)
|style="background:WhiteSmoke; color:black"|<0.15nm RMS
|style="background:WhiteSmoke; color:black"|<0.15nm RMS
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Max. scan depth as a function of trench width W
|style="background:WhiteSmoke; color:black"|~1 for our standard probe. Can be improved to about 10 with the right probe
|style="background:WhiteSmoke; color:black"|~1 for our standard probe. Can be improved to about 10 with the right probe
|-
!style="background:silver; color:black" align="left"|Hardware settings
|style="background:LightGrey; color:black"|Tip radius of curvature
|style="background:WhiteSmoke; color:black"|Standard probe: <12 nm
|style="background:WhiteSmoke; color:black"|Standard probe: <12 nm
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Standard ScanAsyst mode Cantilever/tip
|style="background:WhiteSmoke; color:black"|[http://www.brukerafmprobes.com/p-3726-scanasyst-air.aspx ScanAsyst in Air]
|style="background:WhiteSmoke; color:black"|[http://www.brukerafmprobes.com/p-3726-scanasyst-air.aspx ScanAsyst in Air]
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Standard Tapping mode Cantilevers/tips
|style="background:WhiteSmoke; color:black"|[http://www.nanoandmore.com/AFM-Probe-Tap300Al-G.html Tap300Al-G]
|style="background:WhiteSmoke; color:black"|[http://www.nanoandmore.com/AFM-Probe-Tap300Al-G.html Tap300Al-G]
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Super Sharp Si Cantilever/tip
|style="background:WhiteSmoke; color:black"|[http://www.nanoandmore.com/AFM-Probe-SSS-NCHR.html SSS-NCHR]
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|High Aspect Ratio Cantilever/tip
|style="background:WhiteSmoke; color:black"|[http://www.nanoandmore.com/AFM-Probe-AR5-NCHR.html AR5-NCHR]
|style="background:WhiteSmoke; color:black"|[http://www.nanoandmore.com/AFM-Probe-AR5-NCHR.html AR5-NCHR]
|-
|style="background:silver; color:black"|
|style="background:LightGrey; color:black"|Cantilevers/tips vendor
|style="background:WhiteSmoke; color:black"|
*[http://www.brukerafmprobes.com Bruker]
*[http://www.nanoandmore.com/home.php www.nanoandmore.com]
|style="background:WhiteSmoke; color:black"|
*[http://www.brukerafmprobes.com Bruker]
*[http://www.nanoandmore.com/home.php www.nanoandmore.com]
|-
|-
!style="background:silver; color:black" align="left"|Substrates
|style="background:LightGrey; color:black"|Substrate size
|style="background:WhiteSmoke; color:black"|Up to 210mm in diameter and up to 15mm thick"
|style="background:WhiteSmoke; color:black"|Up to 210mm in diameter and up to 15mm thick"
|-
!style="background:silver; color:black" align="left"|
|style="background:LightGrey; color:black"|Motorized stage (X-Y axis)
|style="background:WhiteSmoke; color:black"|
*180mmx150mm inspection area
*2µm repeatability, unidirectional
*3µm repeatability, bidirectional
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*180mmx150mm inspection area
*PeakForce Tapping mode / ScanAsyst
*2µm repeatability, unidirectional
*3µm repeatability, bidirectional
|-
|style="background:silver; color:black"|
| style="background:LightGrey; color:black"|Substrate material allowed
|style="background:WhiteSmoke; color:black"|In principle all materials
|style="background:WhiteSmoke; color:black"|In principle all materials
|-
|}
 
<br clear="all" />
 
===Extra chuck===
 
'''We have two chucks:'''
 
*A symmetric chuck that handles up to 210mm wafers and 15mm thick
 
*An asymmetric chuck that handles up to ~4" wafer (but not small pieces) - using this a whole 4" can be accessed without rotating the sample.
 
 
===Holders===
 
*Magnetic sample holder + magnetic discs + double sided tape
*Holder for vertical profile scans
 
 
 
===Modes included===
 
*ScanAsyst
*TappingMode (air)
*TappingMode (air)
*Contact Mode
*Contact Mode
*Lateral Force Microscopy
*Lateral Force Microscopy
*PhaseImaging
*Phase Imaging
*Lift mode
*Lift mode
*MFM
*MFM
Line 173: Line 50:
*Microscope Image Registration and Overlay (MIRO) software. '''this is only working in the old software (before version 9.4)'''
*Microscope Image Registration and Overlay (MIRO) software. '''this is only working in the old software (before version 9.4)'''


===Probes===
|style="background:WhiteSmoke; color:black" valign="top"|
*PeakForce Tapping mode / ScanAsyst
*TappingMode (air)
*Contact Mode
*Lateral Force Microscopy
*Phase Imaging
*Lift mode
*Force Spectroscopy
*Force volume
*surface potential
*Torsional Resonance Mode
*Piezoresponse Microscopy
*Force spectroscopy


Probes that followed the system (we may not have them anymore!)


|-
|style="background:silver; color:black"|Probes that followed the systems
|style="background:WhiteSmoke; color:black"|
{|border="1" cellspacing="1" cellpadding="3" style="text-align:left;"  
{|border="1" cellspacing="1" cellpadding="3" style="text-align:left;"  
|-
|-
Line 182: Line 73:
|-
|-
|-style="background:silver; color:black"
|-style="background:silver; color:black"
!
!ScanAsyst mode
!ScanAsyst mode
!Tapping mode
!Tapping mode
Line 188: Line 78:
!PF-KPFM
!PF-KPFM
|-
|-
|-
|-style="background:WhiteSmoke; color:black"
!Generel description
|Generel description
|Generel description
|
|
|-
|-
|-
|-style="background:LightGrey; color:black"
|-style="background:LightGrey; color:black"
!Probes that followed the system
|
|
*ScanAsyst air 30ps
*ScanAsyst air 30ps
Line 222: Line 101:
|}
|}


<br clear="all" />
|style="background:WhiteSmoke; color:black" valign="top"|
{|border="1" cellspacing="1" cellpadding="3" style="text-align:left;"
|-
|-style="background:silver; color:black"
!ScanAsyst mode
!Tapping mode
!Contact mode
|-
 
|-
|-style="background:LightGrey; color:black"
|
*ScanAsyst air 20ps
*ScanAsyst fluid 10ps
*ScanAsyst fluid + 10ps
|
*RTESP-300 (like MPP-11100-10)
*RFESP-75 (like MPP-21100-10)
*TESPA-V2 10ps
*OTESPA-R3 10ps
*NCHV 10ps
 
|
*SNL-10 20ps


===Samples===
|-
|}


|-
|style="background:silver; color:black"|Samples
|style="background:WhiteSmoke; color:black"|
*QC grid: VGRP-15M 10µm pitch and depth reference 178nm
*QC grid: VGRP-15M 10µm pitch and depth reference 178nm
*PF KPFM-SMPL Kelvin probe Sample: Al + Au on Si  
*PF KPFM-SMPL Kelvin probe Sample: Al + Au on Si  
*HOPG: Highly Oriented Pyrolytic Graphite


'''Calibration samples for getting quantitative modulus measurements:'''
'''Calibration samples for getting quantitative modulus measurements:'''
Line 239: Line 146:
#HOPG-12M: Highly Orientated Pyrolytic Graphite
#HOPG-12M: Highly Orientated Pyrolytic Graphite
#PS-LDPE: Harmonix training
#PS-LDPE: Harmonix training
|style="background:WhiteSmoke; color:black" valign="top"|
*QC grid: VGRP-15M 10µm pitch and depth reference 181nm
*HOPG: Highly Oriented Pyrolytic Graphite
|-
|}


<br clear="all" />


*HOPG: Highly Oriented Pyrolytic Graphite
==AFM Icon-Pt 1: Acceptance tests done==
 
==Acceptance tests done==


===Noise tests===
===Noise tests===
Line 281: Line 192:
Phase: Phase imaging maps the phase lag between the periodic signal driving the cantilever and the oscillations of the cantilever. Changes in phase lag often indicate changes in the properties of the sample surface. Here the structuring in the graphene is very clear
Phase: Phase imaging maps the phase lag between the periodic signal driving the cantilever and the oscillations of the cantilever. Changes in phase lag often indicate changes in the properties of the sample surface. Here the structuring in the graphene is very clear


=AFM Icon 2 accessories and acceptance test=
==AFM Icon-Pt 2: Acceptance test==
===Noise tests===
====Sensor noise====
 
Tapping ]mode, OTESPA-R3 probe used. <br>
First we made a false engage (scanning in air):
Turn off gain 0 0 <br>
Z range 0.2my <br>
Scan size 0.01nm <br>
Roughness: Rq 28 pm (specs 35pm) <br>
[[Image:scanner noise.JPG|400px]]
 
<br clear="all" />
 
====System noise====
Noise on sample: scan size 0.1nm <br>
we started with 1my scan size to optimize the scan. <br>
2.43Hz <br>
256 lines <br>
Z range at 2my to get sub nanometer resolution in Z <br>
Rq: 28 pm
 
[[File:System noise.JPG|400px]]
<br clear="all" />
 
===Demonstrating roughness measurements on silicon===
 
====ScanAsyst with ScanAsyst-air====
*CL on
*512x512
*0dg
*ScanAsyst noise threshold: 1
*PeakForce amplitide 300 nm
*Peak force frequency: 2 Hz
*Rq: 0.247 nm
[[File:Roughness on Si 1 ScanAsyst with ScanAsyst-air CL on.JPG|400px]]
====ScanAsyst with ScanAsyst-air====
*CL off
*512x512
*0dg
*ScanAsyst noise threshold: 0.2
*PeakForce amplitide 300 nm
*Peak force frequency: 2 Hz
*Rq: 0.235 nm
[[File:Roughness on Si 2 ScanAsyst with ScanAsyst-air CL off.JPG|400px]]
====ScanAsyst with TAP150A====
*CL on
*512x512
*0dg
*ScanAsyst noise threshold: 1
*PeakForce amplitude 75 nm (was set as standard from the probe settings)
*Peak force frequency: 2 Hz
*Rq: 0.238/0.250 nm
[[File:Roughness on Si 3 ScanAsyst with TAP150A CL on A.JPG|400px]][[File:Roughness on Si 3 ScanAsyst with TAP150A CL on B.JPG|400px]]
====Tapping mode with TAP150A====
*CL on
*512x512
*0dg
*Rq: 0.214 nm
[[File:Roughness on Si 4 Tapping mode with TAP150A CL on.JPG|400px]]
====Tapping mode with RFESP-75====
*CL on
*512x512
*0dg
*Rq: 0.224 nm
[[File:Roughness on Si  5 Tapping mode with RFESP-75 CL on.JPG|400px]]
 
===Step measurement: Resist on silicon oxide===
SIO2ICP_30 (Si-SiO2-Resist)
*When scanning long lines and trenches scan 90 degrees to the probe and 90 degrees to the lines.
*During acceptance:
**Tapping mode: 3 µm structures (middle): 1.587µm
**Tapping mode: 3µm structures (edge): 1.541µm
**Peak Force tapping 3µm structures (edge) average: 1.497µm (tapping mode probe)
**Peak Force tapping with ScanAsyst probe: 1.509µm
SEM images showed about 1.55µm – so it seems like ScanAsyst  is pressing a little down in the resist compared with the SiO2 giving a too small height difference.
Therefor When scanning steps with difference materials, when one of the materials is soft and you need to know the height difference, then it seems to be best to use tapping mode.
We did not save the images. Therefor I remeasured a few days later:
====Tapping mode with TAP150A====
*CL on
*256x32
*0dg
*Step height: 1545/1532 nm
[[File:SiO2-resist step Tapping mode with TAP150A.JPG|400px]]
====ScanAsyst with TAP150A====
*CL on
*256x32
*0dg
*ScanAsyst noise threshold: 1
*PeakForce amplitide 75 nm (was set as standard from the probe settings)
*Peak force frequency: 2 Hz
*Step height: 1537 nm
[[File:SiO2-resist step ScanAsyst mode with TAP150A.JPG|400px]]
====ScanAsyst with ScanAsyst-air====
*CL on
*256x32
*0dg
*ScanAsyst noise threshold: 1
*PeakForce amplitide 150 nm (I had to increase it from the 75 nm)
*Peak force frequency: 2 Hz
*Step height: 1545 nm
[[File:SiO2-resist step ScanAsyst mode with ScanAsyst-air.JPG|400px]]
====Tapping mode with RFESP-75====
*CL on
*256*32
*0dg
*Step height: 1525 nm
[[File:SiO2-resist step Tapping mode with RFESP-75.JPG|400px]]
 
===High Aspect ratio sample===
High aspect ratio samples (e.g. 100 nm wide trenches 300 nm deep and 2 µm wide trenches 6µm deep).  The probes for this: FIB6-400A.
This was done and work spaces were created but no images was saved.

Latest revision as of 15:01, 30 January 2023

Feedback to this page: click here

This page has been made by Berit Herstrøm @ DTU Nanolab

Accessories following the systems

Equipment AFM Icon AFM Icon 2
Chucks
  • A symmetric chuck that handles up to 210mm wafers and 15mm thick
  • An asymmetric chuck that handles up to ~4" wafer (but not small pieces) - using this a whole 4" can be accessed without rotating the sample.
  • A symmetric chuck that handles up to 210mm wafers and 15mm thick
Holders
  • Magnetic sample holder + magnetic discs + double sided tape
  • Holder for vertical profile scans
  • Magnetic sample holder + magnetic discs + double sided tape
  • Holder for vertical profile scans ?
Modes included
  • PeakForce Tapping mode / ScanAsyst
  • TappingMode (air)
  • Contact Mode
  • Lateral Force Microscopy
  • Phase Imaging
  • Lift mode
  • MFM
  • Force Spectroscopy
  • Force volume
  • EFM
  • surface potential
  • Torsional Resonance Mode
  • Piezoresponse Microscopy
  • Force spectroscopy


Extra modes:

  • PeakForce KPFM package (incl extra box for high voltage PF KPFM)
  • PFQNM package
  • Microscope Image Registration and Overlay (MIRO) software. this is only working in the old software (before version 9.4)
  • PeakForce Tapping mode / ScanAsyst
  • TappingMode (air)
  • Contact Mode
  • Lateral Force Microscopy
  • Phase Imaging
  • Lift mode
  • Force Spectroscopy
  • Force volume
  • surface potential
  • Torsional Resonance Mode
  • Piezoresponse Microscopy
  • Force spectroscopy


Probes that followed the systems
ScanAsyst mode Tapping mode Contact mode PF-KPFM
  • ScanAsyst air 30ps
  • ScanAsyst fluid 10ps
  • ScanAsyst fluid + 10ps
  • MPP-11100-10
  • MPP-21100-10
  • MPP-11120-10 RTESPA
  • TESPA-V2 10ps
  • OTESPA-R3 10ps
  • High Aspect ratio probes 1:15: FIB6-400A 5ps
  • MPP-12120 10ps. Tap150A
  • MPP-13120-10 TAP525A
  • SNL-10 20ps
  • SCM-PIT 10ps
  • PFQNE-Al 10ps
ScanAsyst mode Tapping mode Contact mode
  • ScanAsyst air 20ps
  • ScanAsyst fluid 10ps
  • ScanAsyst fluid + 10ps
  • RTESP-300 (like MPP-11100-10)
  • RFESP-75 (like MPP-21100-10)
  • TESPA-V2 10ps
  • OTESPA-R3 10ps
  • NCHV 10ps
  • SNL-10 20ps
Samples
  • QC grid: VGRP-15M 10µm pitch and depth reference 178nm
  • PF KPFM-SMPL Kelvin probe Sample: Al + Au on Si
  • HOPG: Highly Oriented Pyrolytic Graphite

Calibration samples for getting quantitative modulus measurements:

  1. PDMS-soft-1-12M: PDMS gel 2.5MPa
  2. PDMS-soft-2-12M: PDMS gel 3.5MPa
  3. PSFilm-12M: Polystyrene filem
  4. FSilica-12M: Fused Silica
  5. Sapphire-12M: Sapphire
  6. RS-12M: Ti roughness sample
  7. HOPG-12M: Highly Orientated Pyrolytic Graphite
  8. PS-LDPE: Harmonix training
  • QC grid: VGRP-15M 10µm pitch and depth reference 181nm
  • HOPG: Highly Oriented Pyrolytic Graphite


AFM Icon-Pt 1: Acceptance tests done

Noise tests

Sensor noise

Tappingmode, OTESPA-R3 probe used.
First we made a false engage (scanning in air): Turn off gain 0 0
Z range 0.2my
Scan size 0.01nm
We saw some 50Hz noise (electrical - or maybe pumps): Rq 15 pm (specs 35pm)


System noise

Noise on sample: scan size 0.1nm
we started with 1my scan size to optimize the scan.
2.43Hz
256 lines
Z range at 2my to get sub nanometer resolution in Z
Rq: 54,5pm (plade vibrator koerte udenfor)
Rq: 23pm uden vibrator koerende + ro og med aaben hood.
Rq:71pm uden vibrator koerende + ro og med lukket hood


Roughness

HAR: 200nm wide 400nm deep

HAR: 2µm wide 6µm deep

Graphene KPFM measurement


Height image: The graphene and structuring in graphene is not visible
Potential image: Potential difference between grapheme and non-graphene is visible
Phase: Phase imaging maps the phase lag between the periodic signal driving the cantilever and the oscillations of the cantilever. Changes in phase lag often indicate changes in the properties of the sample surface. Here the structuring in the graphene is very clear

AFM Icon-Pt 2: Acceptance test

Noise tests

Sensor noise

Tapping ]mode, OTESPA-R3 probe used.
First we made a false engage (scanning in air): Turn off gain 0 0
Z range 0.2my
Scan size 0.01nm
Roughness: Rq 28 pm (specs 35pm)


System noise

Noise on sample: scan size 0.1nm
we started with 1my scan size to optimize the scan.
2.43Hz
256 lines
Z range at 2my to get sub nanometer resolution in Z
Rq: 28 pm


Demonstrating roughness measurements on silicon

ScanAsyst with ScanAsyst-air

  • CL on
  • 512x512
  • 0dg
  • ScanAsyst noise threshold: 1
  • PeakForce amplitide 300 nm
  • Peak force frequency: 2 Hz
  • Rq: 0.247 nm

ScanAsyst with ScanAsyst-air

  • CL off
  • 512x512
  • 0dg
  • ScanAsyst noise threshold: 0.2
  • PeakForce amplitide 300 nm
  • Peak force frequency: 2 Hz
  • Rq: 0.235 nm

ScanAsyst with TAP150A

  • CL on
  • 512x512
  • 0dg
  • ScanAsyst noise threshold: 1
  • PeakForce amplitude 75 nm (was set as standard from the probe settings)
  • Peak force frequency: 2 Hz
  • Rq: 0.238/0.250 nm

Tapping mode with TAP150A

  • CL on
  • 512x512
  • 0dg
  • Rq: 0.214 nm

Tapping mode with RFESP-75

  • CL on
  • 512x512
  • 0dg
  • Rq: 0.224 nm

Step measurement: Resist on silicon oxide

SIO2ICP_30 (Si-SiO2-Resist)

  • When scanning long lines and trenches scan 90 degrees to the probe and 90 degrees to the lines.
  • During acceptance:
    • Tapping mode: 3 µm structures (middle): 1.587µm
    • Tapping mode: 3µm structures (edge): 1.541µm
    • Peak Force tapping 3µm structures (edge) average: 1.497µm (tapping mode probe)
    • Peak Force tapping with ScanAsyst probe: 1.509µm

SEM images showed about 1.55µm – so it seems like ScanAsyst is pressing a little down in the resist compared with the SiO2 giving a too small height difference. Therefor When scanning steps with difference materials, when one of the materials is soft and you need to know the height difference, then it seems to be best to use tapping mode. We did not save the images. Therefor I remeasured a few days later:

Tapping mode with TAP150A

  • CL on
  • 256x32
  • 0dg
  • Step height: 1545/1532 nm

ScanAsyst with TAP150A

  • CL on
  • 256x32
  • 0dg
  • ScanAsyst noise threshold: 1
  • PeakForce amplitide 75 nm (was set as standard from the probe settings)
  • Peak force frequency: 2 Hz
  • Step height: 1537 nm

ScanAsyst with ScanAsyst-air

  • CL on
  • 256x32
  • 0dg
  • ScanAsyst noise threshold: 1
  • PeakForce amplitide 150 nm (I had to increase it from the 75 nm)
  • Peak force frequency: 2 Hz
  • Step height: 1545 nm

Tapping mode with RFESP-75

  • CL on
  • 256*32
  • 0dg
  • Step height: 1525 nm

High Aspect ratio sample

High aspect ratio samples (e.g. 100 nm wide trenches 300 nm deep and 2 µm wide trenches 6µm deep). The probes for this: FIB6-400A. This was done and work spaces were created but no images was saved.