Specific Process Knowledge/Characterization/XRD: Difference between revisions

From LabAdviser
Khara (talk | contribs)
Eves (talk | contribs)
 
(57 intermediate revisions by 4 users not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:labadviser@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php?title=Specific_Process_Knowledge/Characterization/XRD click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/XRD click here]'''


== XRD SmartLab ==
<i> Unless otherwise stated, this page is written by <b>DTU Nanolab internal</b></i>


The Rigaku SmartLab is an advanced XRD for measuring on thin films. All thin films can be measured without fixating the sample, as the system has a so called In-Plane arm.


[[image:XRD_SmartLab.jpg|200x200px|right|thumb|The XRD SmartLab located in cleanroom F-2]]
=XRD at DTU Nanolab=
We have two X-ray diffraction setups in building 346:
*The [[/XRD_SmartLab|XRD SmartLab]] primarily for thin film analysis inside the cleanroom.
*The [[/XRD SmartLab 9kW Rotating Anode|XRD SmartLab 9kW Rotating Anode]] multipurpose system outside the cleanroom.
*The [[/XRD_Powder|XRD Powder]] for phase analysis of powders outside the cleanroom.


==Experiments performed with XRD==
*[[/Process Info|List and description of possible XRD measurements with typical setup requirements]] Note mostly relevant for XRD Smartlab


'''The user manual(s), user APV(s), technical information, and contact information can be found in LabManager:'''
==Data analysis==
For data analysis, we recommend using Rigaku SmartLab Studio for both thinfilms and basic powder analysis.
If more advanced powder analysis is needed we provide access to a remote desktop with a licence for the excellent Malvern Panalytical software, HighScore.


[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=428  XRD SmartLab in LabManager]
*[[/software|Installing SmartLab Studio II]]
*[[/dataconversion|Converting data from XRD Powder to SmartLab Studio II]]
*[[/SLSII_analysis|Guide for using SmartLab Studio II for data analysis]]
*[[/HighScore_analysis|Guide for using HighScore Plus for advanced powder data analysis]]


== Process information ==
Apart from this commercial software a wide range of free software is available online for data analysis. [https://xrd.mit.edu/xrd-software Here are some suggestions from MIT].


 
==Comparison of the XRDs at Nanolab==
===XRR===
With X-Ray Reflectivity measurements, it is possible to obtain information on thickness, density, and both surface and interface roughness on thin films. The technique does not depend on crystal structure and can be used on both amorphous, poly-, and single-crystalline materials.
For film thickness measurement, films op to around 100 nm can be measured. You are welcome to try it on thicker films, but please confirm the measurement the first time by use of other equipment. XRR is a special case of a Theta/2Theta measurement.
Rigaku gives a good explanation of the principles behind the XRR in [[:File:X-ray thin film measurements techniques V X-ray reflectivity measurements.pdf|this paper.]]
[[File:XRR.png|400px]]
 
===Theta-2Theta===
A theta-2theta scan can be used for identifying peaks and hence lattice constants and possible crystal orientations. It will also be possible to say something about the materials of the crystal, but it is not suitable for identification of composition. If a multilayers structure is, present a simulation of the stricter and comparison to the measurement can help identify layer thicknesses, atomic ratios, and interface roughness’s.
 
===Rocking curve===
A rocking curve is measured by fixing the 2Theta angle and changing the incident angle omega, which is the same as rocking the sample in the setup. This can be used to determine the preferred orientation and the degree of orientation of the measured material. For a perfect crystal and rocking curve will show a single sharp peak, if the layers are not perfect crystalline the diffraction peak will broaden.
If an epitaxial layer is grown on a preface substrate, and the sample alignment is done to the substrate peak, a shift in omega will indicate a tilt in the crystal planes. A broadening could mean a dislocations, mosaicity, or curvature of the sample.
[[File:RC.png|400px]]
 
===Pole figure===
Pole figures can be used to determine the orientation of a crystal. For polycrystalline materials, it is possible to determine if there is a preferred direction of the crystal grains. In a pole figure, a measurement of a predefined peek for the material is measured in the half sphere above the sample. This will result in a map of intensities in relation to the angles from the surface normal and along sample rotation. For instance if you have a single crystalline sample with a [0 0 1] surface and measure on the [1 1 1] lattice plane, you should find 4 peaks spaced 90° in beta and at 35.26° in alpha.
Peak angles can be calculated by simple vector calculations; however, I have made a small MATLAB script calculating them for you. To use the script open MATLAB and call the program with two vectors as input. First vector should be your surface orientation, second input the plane you measure on. For a [1 1 1] substrate surface and a [3 1 1] plane and a [0 0 1] substrate surface and a [1 3 3] plane, where the measurement planes are dependent on the 2theta angle, the command looks like this:
PoleFigureAngles([1 1 1; 0 0 1],[3 1 1; 1 3 3])
This will return a table and a plot
alpha beta alpha beta
10.02 60.00 13.26 0.00
10.02 300.00 13.26 270.00
10.02 180.00 13.26 90.00
31.48 30.00 13.26 180.00
31.48 330.00 43.49 333.43
31.48 90.00 43.49 296.57
31.48 270.00 43.49 26.57
31.48 150.00 43.49 243.43
31.48 210.00 43.49 63.43
60.50 60.00 43.49 206.57
60.50 300.00 43.49 116.57
60.50 180.00 43.49 153.43
[[File:PoleFigureAngles.png|400px]][[File:Overlay.png|400px]]
 
It is also possible to give a path for a file exported from 3D Explore with contour data from a measurement, and a rotational correction for the data:
PoleFigureAngles([1 1 1; 0 0 1],[3 1 1; 1 3 3],'\Au_thin_inplanepole_WF1_m2.txt',30.9)
Which will give the following pictures:
Rigaku describes Pole figures [[:File:X-ray thin film measurements techniques VII Pole figure measurement.pdf|this paper]].
 
==Software for analysis==
The software packages used for data analysis are available on the equipment computer, but we recommend that you install it on your personal computer. To run the software you need a USB dongle with a license on, these can be borrowed from Rebecca and Kristian in room 347-077. We only have 9 dongles available, so when you are done please return the dongle to danchip.
 
The software can be found on "CleanroomDrive\_Equipment\XRD\Rigaku software\RILauncher", it should be possible to install the software without a dongle. To use the software you have to log in. The user is: Administrator. There is no password.
 
==Equipment performance and process related parameters==


{| border="2" cellspacing="0" cellpadding="2"  
{| border="2" cellspacing="0" cellpadding="2"  
Line 66: Line 30:
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
|style="background:WhiteSmoke; color:black"|<b>XRD SmartLab</b>
|style="background:WhiteSmoke; color:black"|<b>XRD SmartLab</b>
|style="background:WhiteSmoke; color:black"|<b>XRD SmartLab 9kW Rotating Anode</b>
|style="background:WhiteSmoke; color:black"|<b>XRD Powder</b>
|-
|-
!style="background:silver; color:black;" align="center" width="60"|Purpose  
!style="background:silver; color:black;" align="center" width="60"|Purpose  
|style="background:LightGrey; color:black"| Crystal structure analysis and thin film thickness measurement
|style="background:LightGrey; color:black"| Crystal structure analysis  
 
and thin film thickness measurement
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Phase ID
*Phase ID
Line 82: Line 50:
*Roughness
*Roughness
*Density
*Density
|style="background:WhiteSmoke; color:black"|
*Phase ID
*Crystal Size
*Crystallinity
*Quality and degree of orientation
*3D orientation
*Latice strain
*Composition
*Twist
*3D lattice constant
*Thickness
*Roughness
*Density
|style="background:WhiteSmoke; color:black"|
*Phase ID
*Crystal Size
*Crystallinity
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="6"|X-ray generator
!style="background:silver; color:black" align="center" valign="center" rowspan="6"|X-ray generator
Line 88: Line 73:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
3 kW
3 kW
|style="background:WhiteSmoke; color:black"|
9 kW
|style="background:WhiteSmoke; color:black"|
600 W
|-
|-
|style="background:LightGrey; color:black"|
|style="background:LightGrey; color:black"|
Line 93: Line 82:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
20 to 45 kV
20 to 45 kV
|style="background:WhiteSmoke; color:black"|
20 to 45 kV
|style="background:WhiteSmoke; color:black"|
40 kV
|-
|-
|style="background:LightGrey; color:black"|
|style="background:LightGrey; color:black"|
Line 98: Line 91:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
2 to 60 mA
2 to 60 mA
|style="background:WhiteSmoke; color:black"|
2 to 200 mA
|style="background:WhiteSmoke; color:black"|
15 mA
|-
|-
|style="background:LightGrey; color:black"|
|style="background:LightGrey; color:black"|
Type
Type
|style="background:WhiteSmoke; color:black"|
Sealed tube
|style="background:WhiteSmoke; color:black"|
Rotating Anode
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Sealed tube
Sealed tube
Line 106: Line 107:
|style="background:LightGrey; color:black"|
|style="background:LightGrey; color:black"|
Target
Target
|style="background:WhiteSmoke; color:black"|
Cu
|style="background:WhiteSmoke; color:black"|
Cu
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Cu
Cu
Line 112: Line 117:
Focus size
Focus size
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
0.4x8 mm (Line/Point)
0.4 mm x 8 mm (Line/Point)
|style="background:WhiteSmoke; color:black"|
0.1-0.5 mm x 8 mm (Line/Point)
|style="background:WhiteSmoke; color:black"|
0.4 mm x 12 mm (Line)
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="5"|Goniometer
!style="background:silver; color:black" align="center" valign="center" rowspan="4"|Goniometer
|style="background:LightGrey; color:black"|
|style="background:LightGrey; color:black"|
Scanning mode
Scanning mode
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
incident / receiver coupled or independent
incident / receiver coupled or independent
|style="background:WhiteSmoke; color:black"|
incident / receiver coupled or independent
|style="background:WhiteSmoke; color:black"|
incident / receiver coupled
|-
|-
|style="background:LightGrey; color:black"|
|style="background:LightGrey; color:black"|
Line 124: Line 137:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
300 mm
300 mm
|style="background:WhiteSmoke; color:black"|
300 mm
|style="background:WhiteSmoke; color:black"|
145 mm
|-
|-
|style="background:LightGrey; color:black"|
|style="background:LightGrey; color:black"|
Line 129: Line 146:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
0.0001° (0.36")
0.0001° (0.36")
|style="background:WhiteSmoke; color:black"|
0.0001° (0.36")
|style="background:WhiteSmoke; color:black"|
0.001° (3.6")
|-
|-
|style="background:LightGrey; color:black"|
|style="background:LightGrey; color:black"|
Sample stage
Sample stage motion
|style="background:WhiteSmoke; color:black"|
*&chi;:-5~+95°
*&phi;:0~360°
*Z:-4~+1 mm
*X,Y:&plusmn;50 mm for a 100 mm wafer
*Rx,Ry:-5~+5°
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*&chi;:-5~+95°
*&chi;:-5~+95°
Line 138: Line 165:
*X,Y:&plusmn;50 mm for a 100 mm wafer
*X,Y:&plusmn;50 mm for a 100 mm wafer
*Rx,Ry:-5~+5°
*Rx,Ry:-5~+5°
|-
|style="background:LightGrey; color:black"|
Sample size
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Diameter: 150 mm
Fixed with rotation
Thickness: 0~21 mm
 
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Optics
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Optics
Line 152: Line 176:
*In-Plane Parallel Slit Collimator (PSC)
*In-Plane Parallel Slit Collimator (PSC)
*Soller slit
*Soller slit
*Variable divergence slit
*Automatic variable divergence slit
*Length limiting slits
|style="background:WhiteSmoke; color:black"|
*Cross Beam Optics(CBO)
*Ge(400)x2 monochromator
*In-Plane Parallel Slit Collimator (PSC)
*Soller slit
*Automatic variable divergence slit
*Length limiting slits
|style="background:WhiteSmoke; color:black"|
*0.04° soller slit
*Ni and Cu filter
*Divergence slits
*Beam masks
|-
|-
|style="background:LightGrey; color:black"|Receiver side
|style="background:LightGrey; color:black"|Receiver side
Line 160: Line 197:
*Parallel slit analysers (PSA)
*Parallel slit analysers (PSA)
*Ge(220)x2 analyser
*Ge(220)x2 analyser
|style="background:WhiteSmoke; color:black"|
*Automatic variable scattering slit
*Automatic variable receiver slit
*Parallel slit analysers (PSA)
*Ge(400)x2 analyser
|style="background:WhiteSmoke; color:black"|
*0.04° soller slit
*Ni filter
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="3"|Substrates
!style="background:silver; color:black" align="center" valign="center" rowspan="3"|Substrates
|style="background:LightGrey; color:black"|Measurement temperature
|style="background:WhiteSmoke; color:black"|
Room temperature
|style="background:WhiteSmoke; color:black"|
Room temperature
|style="background:WhiteSmoke; color:black"|
May be heated in N<sub><sub>2</sub></sub> up to 500°C
|-
|style="background:LightGrey; color:black"|Substrate size
|style="background:LightGrey; color:black"|Substrate size
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
up to 150 mm wafers
up to 150 mm wafers
Thickness max 21 mm
|style="background:WhiteSmoke; color:black"|
up to 150 mm wafers
Thickness max 21 mm
|style="background:WhiteSmoke; color:black"|
Only for powders
|-
|-
| style="background:LightGrey; color:black"|Allowed materials
| style="background:LightGrey; color:black"|Allowed materials
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
All materials
All materials approved in the cleanroom.
 
No powders or dusty materials.
|style="background:WhiteSmoke; color:black"|
All materials have to be approved
|style="background:WhiteSmoke; color:black"|
All materials have to be approved
|-  
|-  
|}
|}


<br clear="all" />
<br clear="all" />

Latest revision as of 18:09, 25 September 2024

Feedback to this page: click here

Unless otherwise stated, this page is written by DTU Nanolab internal


XRD at DTU Nanolab

We have two X-ray diffraction setups in building 346:

Experiments performed with XRD

Data analysis

For data analysis, we recommend using Rigaku SmartLab Studio for both thinfilms and basic powder analysis. If more advanced powder analysis is needed we provide access to a remote desktop with a licence for the excellent Malvern Panalytical software, HighScore.

Apart from this commercial software a wide range of free software is available online for data analysis. Here are some suggestions from MIT.

Comparison of the XRDs at Nanolab

Equipment XRD SmartLab XRD SmartLab 9kW Rotating Anode XRD Powder
Purpose Crystal structure analysis

and thin film thickness measurement

  • Phase ID
  • Crystal Size
  • Crystallinity
  • Quality and degree of orientation
  • 3D orientation
  • Latice strain
  • Composition
  • Twist
  • 3D lattice constant
  • Thickness
  • Roughness
  • Density
  • Phase ID
  • Crystal Size
  • Crystallinity
  • Quality and degree of orientation
  • 3D orientation
  • Latice strain
  • Composition
  • Twist
  • 3D lattice constant
  • Thickness
  • Roughness
  • Density
  • Phase ID
  • Crystal Size
  • Crystallinity
X-ray generator

Maximum rated output

3 kW

9 kW

600 W

Rated tube voltage

20 to 45 kV

20 to 45 kV

40 kV

Rated tube current

2 to 60 mA

2 to 200 mA

15 mA

Type

Sealed tube

Rotating Anode

Sealed tube

Target

Cu

Cu

Cu

Focus size

0.4 mm x 8 mm (Line/Point)

0.1-0.5 mm x 8 mm (Line/Point)

0.4 mm x 12 mm (Line)

Goniometer

Scanning mode

incident / receiver coupled or independent

incident / receiver coupled or independent

incident / receiver coupled

Goniomenter radius

300 mm

300 mm

145 mm

Minimum step size

0.0001° (0.36")

0.0001° (0.36")

0.001° (3.6")

Sample stage motion

  • χ:-5~+95°
  • φ:0~360°
  • Z:-4~+1 mm
  • X,Y:±50 mm for a 100 mm wafer
  • Rx,Ry:-5~+5°
  • χ:-5~+95°
  • φ:0~360°
  • Z:-4~+1 mm
  • X,Y:±50 mm for a 100 mm wafer
  • Rx,Ry:-5~+5°

Fixed with rotation

Optics Incident side
  • Cross Beam Optics(CBO)
  • Ge(220)x2 monochromator
  • In-Plane Parallel Slit Collimator (PSC)
  • Soller slit
  • Automatic variable divergence slit
  • Length limiting slits
  • Cross Beam Optics(CBO)
  • Ge(400)x2 monochromator
  • In-Plane Parallel Slit Collimator (PSC)
  • Soller slit
  • Automatic variable divergence slit
  • Length limiting slits
  • 0.04° soller slit
  • Ni and Cu filter
  • Divergence slits
  • Beam masks
Receiver side
  • Automatic variable scattering slit
  • Automatic variable receiver slit
  • Parallel slit analysers (PSA)
  • Ge(220)x2 analyser
  • Automatic variable scattering slit
  • Automatic variable receiver slit
  • Parallel slit analysers (PSA)
  • Ge(400)x2 analyser
  • 0.04° soller slit
  • Ni filter
Substrates Measurement temperature

Room temperature

Room temperature

May be heated in N2 up to 500°C

Substrate size

up to 150 mm wafers

Thickness max 21 mm

up to 150 mm wafers

Thickness max 21 mm

Only for powders

Allowed materials

All materials approved in the cleanroom.

No powders or dusty materials.

All materials have to be approved

All materials have to be approved