Jump to content

Specific Process Knowledge/Characterization/Optical characterization: Difference between revisions

Bghe (talk | contribs)
Bghe (talk | contribs)
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{cc-nanolab}}
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/Optical_characterization click here]'''  
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/Optical_characterization click here]'''  


Line 6: Line 8:
For comparison of the methods for measuring optical constants and film thickness, see here: [[Specific Process Knowledge/Characterization/Measurement of film thickness and optical constants#Film_thickness_and_optical_constants_of_optical_transparent_films|Film thickness and optical constants of optical transparent films]]
For comparison of the methods for measuring optical constants and film thickness, see here: [[Specific Process Knowledge/Characterization/Measurement of film thickness and optical constants#Film_thickness_and_optical_constants_of_optical_transparent_films|Film thickness and optical constants of optical transparent films]]


==Ellipsometer VASE and Ellipsometer M-2000V ==
==Ellipsometer RC2, Ellipsometer M2000XI (VASE) and Ellipsometer M-2000V ==
''This section is written by Berit Herstrøm @ DTU Nanolab''
''This section is written by Berit Herstrøm @ DTU Nanolab''
[[image:Ellipsometer_VASE_image.JPG|275x275px|right|thumb|Ellipsometer VASE: positioned in cleanroom A-1, {{photo1}}]]
[[image:RC2 system.jpg|275x275px|right|thumb|Ellipsometer RC2: positioned in cleanroom A-1, {{photo1}}]]
[[image:Ellipsometer_VASE_image.JPG|275x275px|right|thumb|Ellipsometer VASE: positioned in cleanroom C-1, {{photo1}}]]


The ellipsometer VASE is actually a M2000XI-210 ellipsometer from J.A. Woollam Co., Inc.. We call it VASE (Variable Angle Spectroscopic Ellipsometry) because it can do spectroscopic ellipsometry at variable angles. <br/>
The ellipsometer RC2 from J.A. Woollam Co., Inc is the newest of our ellipsometers. It performs slightly better then the M2000 and can measure the full Müller matrix. For most users the differences are very small.  The ellipsometer VASE is actually a M2000XI-210 ellipsometer from J.A. Woollam Co., Inc.. We call it VASE (Variable Angle Spectroscopic Ellipsometry) because it can do spectroscopic ellipsometry at variable angles. <br/>
The ellipsometer M2000V is an in-situ ellipsometer from J.A. Wollam Co., Inc. This dedicated for being used on the Sputter System Lesker instrument or the ALD2 for in-situ measurements. When it is not on any system it is positioned next to the ALD2.
The ellipsometer M2000V is an in-situ ellipsometer from J.A. Wollam Co., Inc. This dedicated for being used on the Sputter System Lesker instrument or the ALD2 for in-situ measurements. When it is not on any system it is positioned next to the ALD2.


Line 19: Line 22:
Ellipsometry is an indirect measurement so a model has to be fit to the data in order to obtain the film thickness and optical constants. To learn more about ellipsometry you can take a look at the [http://www.jawoollam.com/tutorial_1.html tutorial] provided by the J. A. Woollam Co.
Ellipsometry is an indirect measurement so a model has to be fit to the data in order to obtain the film thickness and optical constants. To learn more about ellipsometry you can take a look at the [http://www.jawoollam.com/tutorial_1.html tutorial] provided by the J. A. Woollam Co.


Access to use the CompleteEASE software can be found using Remote Desktop connection to: DTU-8CC0321MFL (you can only log on when you have the user competences in LabManager)  
Access to use the CompleteEASE software can be found using Remote Desktop connection to: DTU-8CC0321MFL (you can only log on when you have the user competences in LabManager) or log on to  https://remote.dtu.dk. There should be a connection via Citrix to DTU-8CC0321MFL. You will be prompted for user/password.
 




Line 26: Line 30:


<!-- give the link to the equipment info page in LabManager: -->
<!-- give the link to the equipment info page in LabManager: -->
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=542 LabManager page for Ellipsometer RC2] <br/>
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=316 LabManager page for Ellipsometer VASE] <br/>
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=316 LabManager page for Ellipsometer VASE] <br/>
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=261 LabManager page for Ellipsometer M-2000V]
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=261 LabManager page for Ellipsometer M-2000V]
Line 32: Line 37:
===More details===
===More details===
* Before training:
* Before training:
** First go through the Woollam short tuotial: [http://www.jawoollam.com/tutorial_1.html tutorial]
** First go through the Woollam short tutorial: [http://www.jawoollam.com/tutorial_1.html tutorial]
** Second watch our training video: [https://www.youtube.com/watch?v=EC-oyRhKr0A Training Video]
** Second watch our training video: [https://www.youtube.com/watch?v=EC-oyRhKr0A Training Video]
** To get more understanding - short intro from ''Quantum Design - Europe'': [https://qd-europe.com/dk/en/product/short-introduction-ellipsometry/] - ''optional''
** To get more understanding - short intro from ''Quantum Design - Europe'': [https://qd-europe.com/dk/en/product/short-introduction-ellipsometry/] - ''optional''
Line 42: Line 47:


!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
|style="background:WhiteSmoke; color:black"|<b>Ellipsometer VASE</b>
|style="background:WhiteSmoke; color:black"|<b>Ellipsometer RC2</b>
|style="background:WhiteSmoke; color:black"|<b>Ellipsometer VASE (M2000XI)</b>
|style="background:WhiteSmoke; color:black"|<b>Ellipsometer M-2000V</b>
|style="background:WhiteSmoke; color:black"|<b>Ellipsometer M-2000V</b>
|-
|-
!style="background:silver; color:black;" align="center" width="60"|Purpose  
!style="background:silver; color:black;" align="center" width="60"|Purpose  
|style="background:LightGrey; color:black"|  
|style="background:LightGrey; color:black"|  
|style="background:WhiteSmoke; color:black"|
*Measure thinfilm thicknesses and optical constants for single and multilayer optical transparent thinfilms.
*Measure opticals constants for bulk material.
*Measure thinfilm thicknesses and optical constants at elevated temperature <300C
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Measure thinfilm thicknesses and optical constants for single and multilayer optical transparent thinfilms.
*Measure thinfilm thicknesses and optical constants for single and multilayer optical transparent thinfilms.
Line 56: Line 66:
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Performance
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Performance
|style="background:LightGrey; color:black"|Films that can be examined
|style="background:LightGrey; color:black"|Films that can be examined
|style="background:WhiteSmoke; color:black"|
Any film that is transparent to the light in the given wavelength range
e.g.:
*Silicon Oxide
*Silicon nitride
*PolySilicon
*Resists
*Polymers
*Very thin layers of metals
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Any film that is transparent to the light in the given wavelength range
Any film that is transparent to the light in the given wavelength range
Line 79: Line 98:
|style="background:LightGrey; color:black"|Film thickness range
|style="background:LightGrey; color:black"|Film thickness range
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*~20Å to 2 µm (depending of the material)
*~20Å to a few micrometers (depending of the material)
|style="background:WhiteSmoke; color:black"|
*~20Å to a few micrometers (depending of the material)
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*~20Å to 2 µm (depending of the material)
*~20Å to a few micrometer (depending of the material)
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="4"|Process parameter range
!style="background:silver; color:black" align="center" valign="center" rowspan="4"|Process parameter range
|style="background:LightGrey; color:black"|Wavelength range
|style="background:LightGrey; color:black"|Wavelength range
|style="background:WhiteSmoke; color:black"|
*210nm-1690nm
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*210nm-1690nm
*210nm-1690nm
Line 91: Line 114:
|-
|-
|style="background:LightGrey; color:black"|Incident angle range
|style="background:LightGrey; color:black"|Incident angle range
|style="background:WhiteSmoke; color:black"|
*45-90 degrees
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*45-90 degrees
*45-90 degrees
Line 97: Line 122:
|-
|-
|style="background:LightGrey; color:black"|Beam size
|style="background:LightGrey; color:black"|Beam size
|style="background:WhiteSmoke; color:black"|
*3mm (spot size on sample depends on the angle)
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*2mm (spot size on sample depends on the angle)
*2mm (spot size on sample depends on the angle)
Line 104: Line 131:
|style="background:LightGrey; color:black"|Mapping facility
|style="background:LightGrey; color:black"|Mapping facility
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Can make wafermaps on up to 150mm wafers
*Can make wafer maps on up to 150mm wafers
|style="background:WhiteSmoke; color:black"|
*Can make wafer maps on up to 150mm wafers
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*No mapping facility
*No mapping facility
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Accessories
!style="background:silver; color:black" align="center" valign="center" rowspan="3"|Accessories
|style="background:LightGrey; color:black"|Focusing optics
|style="background:LightGrey; color:black"|Focusing optics
|style="background:WhiteSmoke; color:black"|
*Focus lenses can be applied, reduces the beam diameter to 120µm
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Focus lenses can be applied, reduces the beam diameter to 125µm
*Focus lenses can be applied, reduces the beam diameter to 125µm
Line 119: Line 150:
*Extra stage for transmission measurements
*Extra stage for transmission measurements
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Base for ex-situ measurements, transmission data can be done by holding the sample up agains the detector
*Extra stage for transmission measurements
|style="background:WhiteSmoke; color:black"|
*Base for ex-situ measurements, transmission data can be done by holding the sample up against the detector
|-
|style="background:LightGrey; color:black"|Heating stage
|style="background:WhiteSmoke; color:black"|
*Heating stage for measurements at temperatures up to 300C
|style="background:WhiteSmoke; color:black"|
*None
|style="background:WhiteSmoke; color:black"|
*None
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Substrates
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Substrates
|style="background:LightGrey; color:black"|Batch size
|style="background:LightGrey; color:black"|Batch size
|style="background:WhiteSmoke; color:black"|
*One sample at a time smaller than 150mm (ask if you have anything larger)
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*One sample at a time smaller than 150mm (ask if you have anything larger)
*One sample at a time smaller than 150mm (ask if you have anything larger)
Line 132: Line 175:
*Any material that does not leave residuals on the stage and that does not evaporate
*Any material that does not leave residuals on the stage and that does not evaporate
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Any material that may go into the Sputter system Lesker
*Any material that does not leave residuals on the stage and that does not evaporate
|style="background:WhiteSmoke; color:black"|
*Any material that may go into the ALD2 (when mounted on that system)
|-  
|-  
|}
|}
Line 141: Line 186:
==Filmtek 4000==
==Filmtek 4000==
{{CC-bghe2}}
{{CC-bghe2}}
[[image:Filmtek.JPG|275x275px|right|thumb|FilmTek 4000: positioned in cleanroom A-1, {{photo1}}]]
[[image:Filmtek.JPG|275x275px|right|thumb|FilmTek 4000: positioned in cleanroom D-1, {{photo1}}]]
FilmTek 4000 is a computerized film thickness measurement and material characterization system. This system combines fiber-optic spectrophotometry with advanced material modeling software to provide an affordable and reliable tool for the simultaneous measurement of film thickness, index of refraction, and extinction coefficient
FilmTek 4000 is a computerized film thickness measurement and material characterization system. This system combines fiber-optic spectrophotometry with advanced material modeling software to provide an affordable and reliable tool for the simultaneous measurement of film thickness, index of refraction, and extinction coefficient