Specific Process Knowledge/Lithography: Difference between revisions

From LabAdviser
Jehem (talk | contribs)
Jehem (talk | contribs)
 
(48 intermediate revisions by 3 users not shown)
Line 3: Line 3:
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Lithography click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Lithography click here]'''


[[Category: Equipment|Lithography]]
=Lithography=
[[Category: Lithography]]
 
[[Image:DUV_wafers.jpg|500px|frameless|right|]]
[[Image:DUV_wafers.jpg|500px|frameless|right|]]
__TOC__
__TOC__


There are four different types of lithography available at DTU Nanolab:
Lithography is a method used for transferring a pattern from a physical or digital mask onto the substrate. At DTU Nanolab we have four different types of lithography available:
*[[Specific Process Knowledge/Lithography/UVLithography|UV Lithography]]
*[[Specific Process Knowledge/Lithography/UVLithography|UV Lithography]]: UV lithography is used for making features as small as about 1 micrometer
*[[Specific Process Knowledge/Lithography/DUVStepperLithography|DUV Stepper Lithography]]  
*[[Specific Process Knowledge/Lithography/DUVStepperLithography|DUV Stepper Lithography]]: DUV lithography is used for features as small as 200 nm
*[[Specific Process Knowledge/Lithography/EBeamLithography|E-beam Lithography]]
*[[Specific Process Knowledge/Lithography/EBeamLithography|E-beam Lithography]]: The smallest features can be made in our e-beam writers - about 10 nm
*[[Specific_Process_Knowledge/Imprinting|Nano Imprint Lithography]]  
*[[Specific_Process_Knowledge/Imprinting|Nano Imprint Lithography]]: for stamping without irradiation
<br clear="all" />
<br clear="all" />
=Comparing lithography methods at DTU Nanolab=
=Comparing lithography methods at DTU Nanolab=


{|border="1" cellspacing="1" cellpadding="10" style="text-align:left;"  
{| class="wikitable" width="100%"
|-
|-
 
!  !! [[Specific Process Knowledge/Lithography/UVLithography|UV Lithography]] !! [[Specific Process Knowledge/Lithography/DUVStepperLithography|DUV Stepper Lithography]] !! [[Specific Process Knowledge/Lithography/EBeamLithography|E-beam Lithography]] !! [[Specific_Process_Knowledge/Imprinting|Nano Imprint Lithography]]
|-
|-
|-style="background:silver; color:black"
! scope=row style="text-align: left;" | Generel description
!width="10%"|
| Pattern transfer via ultraviolet (UV) light || Pattern transfer via deep ultraviolet (DUV) light || Patterning by electron beam || Pattern transfer via hot embossing (HE)
!width="16%"| [[Specific Process Knowledge/Lithography/UVLithography|UV Lithography]]
!width="16%"| [[Specific Process Knowledge/Lithography/DUVStepperLithography|DUV Stepper Lithography]]
!width="16%"| [[Specific Process Knowledge/Lithography/EBeamLithography|E-beam Lithography]]
!width="16%"| [[Specific_Process_Knowledge/Imprinting|Nano Imprint Lithography]]
|-
|-
 
! scope=row style="text-align: left;" | Pattern size range  
 
| ~1 µm and up<br>(resist type, thickness, and pattern dependent) || ~200 nm and up<br>(pattern type, shape and pitch dependent) || ~10-1000 nm<br>(and larger at high currents) || ~20 nm and up
|-
|-style="background:WhiteSmoke; color:black"
!Generel description
|Pattern transfer via ultraviolet (UV) light
|Pattern transfer via deep ultraviolet (DUV) light
|Patterning by electron beam
|Pattern transfer via hot embossing (HE)
|-
 
 
|-
|-style="background:LightGrey; color:black"
!Pattern size range
|
~0.6 µm and up<br>
(resist type, thickness, and pattern dependent)
|
~200 nm and up<br>
(pattern type, shape and pitch dependent)
|
~12 nm - 1 µm<br>
(and larger at high currents)
|
~20 nm and up
|-
 
|-
|-
|-style="background:WhiteSmoke; color:black"
! scope=row style="text-align: left;" | Resist type
!Resist type
|  
|
UV sensitive:
UV sensitive:
*AZ 5214E, AZ 4562, AZ MiR 701 (positive)
*AZ 5214E, AZ 4562, AZ MiR 701 (positive)
*AZ 5214E, AZ nLOF 2020, SU-8 (negative)
*AZ 5214E, AZ nLOF 2020, SU-8 (negative)
|
|  
DUV sensitive
DUV sensitive:
*JSR KRF M230Y, JSR KRF M35G (positive)
*JSR KRF M230Y, JSR KRF M35G (positive)
*UVN2300-0.8 (negative)
*UVN2300-0.8 (negative)
|
|  
E-beam sensitive
E-beam sensitive:
*AR-P6200 CSAR, ZEP502A , PMMA (positive)
*AR-P6200 CSAR, ZEP502A , PMMA (positive)
*HSQ, mr-EBL, AR-N 7520 (negative)
*HSQ, mr-EBL, AR-N 7520 (negative)
|
|  
Imprint polymers:
Imprint polymers:
*Topas
*Topas
Line 78: Line 45:
*mr-I 7030R
*mr-I 7030R
|-
|-
 
! scope=row style="text-align: left;" | Resist thickness range  
|-
| ~0.5 µm to 200 µm || ~50 nm to 2 µm || ~30 nm to 1 µm || ~100 nm to 2 µm
|-style="background:LightGrey; color:black"
!Resist thickness range
|
~0.5 µm to 200 µm
|
~50 nm to 2 µm
|
~30 nm to 1 µm
|
~ 100 nm to 2 µm
|-
 
|-
|-
|-style="background:WhiteSmoke; color:black"
! scope=row style="text-align: left;" | Typical exposure time  
!Typical exposure time
| Mask aligner: 10-180 s per wafer<br>Maskless aligner: 5-60 minutes per wafer  
|
|  
10 s - 3 min pr. wafer using mask aligners<br>
10 min - 5 hours pr. wafer using maskless aligners
|
Process dependent:
Process dependent:
*Pattern
*Pattern
Line 105: Line 57:


Throughput is up to 60 wafers/hour
Throughput is up to 60 wafers/hour
|
|  
Process dependent:
Process dependent:
*Dose, Q [µC/cm<sup>2</sup>]
*Dose [µC/cm<sup>2</sup>]: <math>Q</math>
*Beam current, I [A]
*Beam current [A]: <math>I</math>
*Pattern area, a [cm<sup>2</sup>]
*Pattern area [cm<sup>2</sup>]: <math>a</math>


time [s] = Q*a/I
Process time [s]: <math>t = \frac{Q \sdot a}{I}</math>
|
| Process dependent, including heating/cooling rates
Process dependent, including heating/cooling rates
|-
|-
 
! scope=row style="text-align: left;" | Substrate size
 
|  
|-
|-style="background:LightGrey; color:black"
!Substrate size
|
*chips down to 3 mm x 3 mm
*chips down to 3 mm x 3 mm
*50 mm wafers
*50 mm wafers
*100 mm wafers
*100 mm wafers
*150 mm wafers  
*150 mm wafers  
*200 mm wafers
*200 mm wafers  
|
|  
*100 mm wafers
*100 mm wafers
*150 mm wafers  
*150 mm wafers  
*200 mm wafers
*200 mm wafers
|
|  
We have cassettes fitting:
We have cassettes fitting:
*4 small samples (slit openings: 20mm, 12mm, 8mm, 4mm)
*4 small samples (slit openings: 20mm, 12mm, 8mm, 4mm)
Line 138: Line 85:
*1 wafer of 200 mm in size
*1 wafer of 200 mm in size
Only one cassette can be loaded at a time
Only one cassette can be loaded at a time
|
|  
*small samples
*small samples
*50 mm wafers
*50 mm wafers
*100 mm wafers
*100 mm wafers
*150 mm wafers
*150 mm wafers
|-
|-
 
! scope=row style="text-align: left;" | Allowed materials  
|-style="background:WhiteSmoke; color:black"
| Any standard cleanroom material
!'''Allowed materials'''
| Any standard cleanroom material
|
|  
Any standard cleanroom material  
|
Any standard cleanroom material  
|
Any standard cleanroom material, except:
Any standard cleanroom material, except:
*Materials that will degas
*Materials that will degas
*Graphene requires special treatment
*Graphene requires special treatment  
|
| Any standard cleanroom material  
Any standard cleanroom material  
|-
|-
|}
|}
<br clear="all" />
<br clear="all" />


=Equipment Pages=
=Equipment and Process Pages=
 
{| style="color: black;" width="90%"
| colspan="3" |
|-
| style="width: 20%"|
'''<big>[[Specific Process Knowledge/Lithography/Resist|Resist]]</big>'''
*[[Specific_Process_Knowledge/Lithography/Resist#User_resist_bottles_in_the_cleanroom|User bottles in the cleanroom]]
*[[Specific_Process_Knowledge/Lithography/Resist#UV_Resist|UV Resist]]
*[[Specific_Process_Knowledge/Lithography/Resist#DUV_Resist|DUV Resist]]
*[[Specific_Process_Knowledge/Lithography/Resist#E-beam_Resist|E-beam Resist]]
*[[Specific_Process_Knowledge/Lithography/Resist#Imprint_Resist|Imprint Resist]]
 
'''<big>[[Specific Process Knowledge/Lithography/Pretreatment|Pretreatment]]</big>'''
*[[Specific Process Knowledge/Lithography/Pretreatment#HMDS|HMDS]]
*[[Specific Process Knowledge/Lithography/Pretreatment#Buffered_HF-Clean|BHF]]
*[[Specific_Process_Knowledge/Lithography/Pretreatment#Oven_250C|Oven 250C]]
 
'''<big>[[Specific Process Knowledge/Lithography/Coaters|Coating]]</big>'''
*[[Specific_Process_Knowledge/Lithography/Coaters#Spin_Coater:_Gamma_UV|Spin Coater: Gamma UV]]
*[[Specific Process Knowledge/Lithography/DUVStepperLithography#SÜSS Spinner-Stepper|Spin coater: Süss Stepper]]
*[[Specific_Process_Knowledge/Lithography/Coaters#Spin_Coater:_Gamma_E-beam_and_UV|Spin Coater: Gamma e-beam & UV]]
*[[Specific Process Knowledge/Lithography/Coaters#Spin_Coater:_RCD8|Spin Coater: RCD8]]
*[[Specific_Process_Knowledge/Lithography/Coaters#Spin_coater:_Labspin|Spin Coater: Labspin 02/03]]
*[[Specific_Process_Knowledge/Lithography/Coaters/SprayCoater|Spray Coater]]
 
'''<big>[[Specific Process Knowledge/Lithography/Baking|Baking]]</big>'''
*[[Specific Process Knowledge/Lithography/Baking#Hotplates|Hotplates]]
*[[Specific Process Knowledge/Lithography/Baking#Ovens|Ovens]]
 
| style="width: 20%"; valign="top"|
'''<big>[[Specific Process Knowledge/Lithography/UVExposure|UV Exposure Tools]]</big>'''
*[[Specific Process Knowledge/Lithography/UVExposure#Aligner: MA6 - 1|Aligner: MA6-1]]
*[[Specific_Process_Knowledge/Lithography/UVExposure#Aligner:_MA6_-_2|Aligner: MA6-2]]
<!--*[[Specific Process Knowledge/Lithography/UVExposure#Inclined UV lamp|Inclined UV-lamp]]-->
*[[Specific Process Knowledge/Lithography/UVExposure#Aligner: Maskless 01|Aligner: Maskless 01]]
*[[Specific Process Knowledge/Lithography/UVExposure#Aligner: Maskless 02|Aligner: Maskless 02]]
*[[Specific_Process_Knowledge/Lithography/UVExposure#Aligner:_Maskless_03|Aligner: Maskless 03]]
 
'''<big>[[Specific_Process_Knowledge/Lithography/DUVStepperLithography|Deep-UV Exposure]]</big>'''
*[[Specific_Process_Knowledge/Lithography/DUVStepperLithography#DUV_Stepper|DUV Stepper (Canon FPA-3000EX4)]]
 
'''<big>[[Specific Process Knowledge/Lithography/EBeamLithography|Electron Beam Exposure]]</big>'''
*[[Specific_Process_Knowledge/Lithography/EBeamLithography/JEOL_9500_User_Guide|JEOL 9500]]
*[[Specific_Process_Knowledge/Lithography/EBeamLithography/eLINE|Raith Eline]]
 
'''<big>[[Specific_Process_Knowledge/Imprinting|Nano Imprint Lithography]]</big>'''
*[[Specific Process Knowledge/Thin film deposition/MVD|Molecular Vapour Deposition]]
*[[Specific Process Knowledge/Lithography/NanoImprintLithography#EVG NIL|Imprinter 01]]
 
 
| style="width: 20%"; valign="top"|
'''<big>[[Specific Process Knowledge/Lithography/Development|Development]]</big>'''
*[[Specific_Process_Knowledge/Lithography/Development#Developer_TMAH_UV-lithography|Developer: TMAH UV-lithography]]
*[[Specific_Process_Knowledge/Lithography/Development#Developer:_TMAH_Manual|Developer: TMAH Manual]]
*[[Specific Process Knowledge/Lithography/Development#Developer:_SU8_(wetbench)|Developer: SU8 (wetbench)]]
*[[Specific_Process_Knowledge/Lithography/DUVStepperLithography#Developer:_TMAH_Stepper|Developer: TMAH Stepper]]
*[[Specific_Process_Knowledge/Lithography/Development#Developer:_E-beam|Developer: E-beam]]
 
'''<big>[[Specific Process Knowledge/Lithography/Descum|Descum]]</big>'''
*[[Specific Process Knowledge/Lithography/Descum#Plasma_Asher_3:_Descum|Plasma Asher 3:Descum]]
*[[Specific Process Knowledge/Lithography/Descum#Plasma_Asher_4|Plasma Asher 4]]
*[[Specific Process Knowledge/Lithography/Descum#Plasma_Asher_5|Plasma Asher 5]]
*[[Specific_Process_Knowledge/Etch/Wet_Silicon_Oxide_Etch_(BHF)|BHF]]
 
'''<big>[[Specific Process Knowledge/Lithography/LiftOff|Lift-off]]</big>'''
*[[Specific Process Knowledge/Lithography/LiftOff#Lift-off_wet_bench_07|Lift-off]]


'''<big>[[Specific Process Knowledge/Lithography/Strip|Strip]]</big>'''
{{:Specific Process Knowledge/Lithography/UVlithographyProcessPages}}
*[[Specific Process Knowledge/Lithography/Strip#Plasma_Asher_3: Descum|Plasma Asher 3: Descum]]
*[[Specific Process Knowledge/Lithography/Strip#Plasma_Asher_4|Plasma Asher 4]]
*[[Specific Process Knowledge/Lithography/Strip#Plasma_Asher_5|Plasma Asher 5]]
*[[Specific Process Knowledge/Lithography/Strip#Resist_Strip|Resist Strip]]
|}
<br clear="all" />


=Lithography Tool Package Training=
=Lithography Tool Package Training=


DTU Nanolab offers a Tool Package Training in Lithography; the course includes theory on lithographic processes and equipment. After the TPT has been successfully completed, you can begin training on the lithography equipment at DTU Nanolab.
DTU Nanolab offers a Tool Package Training for Lithography (TPT Lithography). You are required to pass this course, in order to get access to the lithography equipment inside the DTU Nanolabs cleanroom facility. The course includes theory on lithographic processes and training videos for equipment operation. The theory part consists of lecture videos followed by quizzes for each section. Once completed successfully, you can do the online training that explains the operation for the specific lithography equipment you want to use in more detail. After completing the online training, you can request hands-on training for the equipment inside the cleanroom via [mailto:training@nanolab.dtu.dk training@nanolab.dtu.dk].  
 
<BR>
You are required to pass this course, in order to get access to using the lithography equipment inside the DTU Nanolab fabrication facility (The Cleanroom).
<BR>
 
The course is available via DTU Learn. You sign up for the course by enrolling yourself in the course [https://www.nanolab.dtu.dk/access/cleanroom-access/equipment-training/lithography-tool-training here].
For details, dates, and course material, please check the course description under [[LabAdviser/Courses#The_Lithography_TPT|Courses]].
<BR>
 
<BR>
 
'''Course Layout'''
'''Signing up for the course'''
<BR>
 
# Online lecture videos (theory)
The course is in DTU Learn. You sign up for the course by enrolling yourself in the course [https://learn.inside.dtu.dk/d2l/le/discovery/view/course/56077 DTU Nanolab TPT: Lithography] - '''requires login'''
# Quizzes for each section
* Watch the lecture videos
# Online training videos (equipment operation)
* Successfully complete all the quizzes
# Individual hands-on training
 
<BR>
 
''Individual hands-on training can be requested via [mailto:training@nanolab.dtu.dk training@nanolab.dtu.dk].''
<BR>
<BR>
'''Learning objectives'''
'''Learning objectives'''
 
<BR>
Learn about the fundamentals of lithography processing in a cleanroom fabrication lab:
* Coating
* Coating
* Exposure
* Exposure
Line 261: Line 132:
* Resist, substrates and pre-treatment
* Resist, substrates and pre-treatment
* Post-lithography steps
* Post-lithography steps
<BR>
'''Qualifying Prerequisites'''
<BR>
* Cleanroom safety course at DTU Nanolab
* Admission to the cleanroom must be obtained before the group training session
<BR>
'''Course Responsible'''
* Jens Hindborg Hemmingsen
* Thomas Aarøe Anhøj
<BR>
If you have questions you can contact us via [mailto:lithography@nanolab.dtu.dk lithography@nanolab.dtu.dk].


'''After completing the TPT'''
When all TPT quizzes have been completed successfully, you have finished the lithography TPT, and can begin the online training on the lithography equipment you need to use. The online training is available in the course [https://learn.inside.dtu.dk/d2l/le/discovery/view/course/118192 DTU Nanolab: lithography equipment training] - '''requires login'''
After completing the online equipment training, you become eligible for the hands-on authorization training, which will take place inside the cleanroom.
<br clear="all" />
<br clear="all" />
<BR>


=Knowledge and Information about Lithography=
=Knowledge and Information about Lithography=
Line 278: Line 155:
*[http://onlinelibrary.wiley.com/doi/10.1002/9781119990413.ch9/pdf  Franssila, 2010, Chapter 9: Optical Lithography]
*[http://onlinelibrary.wiley.com/doi/10.1002/9781119990413.ch9/pdf  Franssila, 2010, Chapter 9: Optical Lithography]
*[http://onlinelibrary.wiley.com/doi/10.1002/9781119990413.ch10/pdf Franssila, 2010, Chapter 10: Advanced Lithography]
*[http://onlinelibrary.wiley.com/doi/10.1002/9781119990413.ch10/pdf Franssila, 2010, Chapter 10: Advanced Lithography]
*[http://www.microchemicals.com/support/troubleshooter.html Lithography Troubleshooter from MicroChemicals]
*[https://archive.org/details/manualzilla-id-5701639/page/n39/mode/2up Handbook of Microlithography, Micromachining, and Microfabrication, Chapter 2: E-beam Lithography]
*[http://www.microchemicals.com/downloads/application_notes.html Application Notes from MicroChemicals]
*[http://www.cnf.cornell.edu/cnf_spietoc.html Handbook of Microlithography, Micromachining, and Microfabrication, Chapter 2: E-beam Lithography]
*[http://onlinelibrary.wiley.com/doi/10.1002/9781118557662.ch3/summary Stefan Landis,Lithography, Chapter 3: E-beam Lithography]
*[http://onlinelibrary.wiley.com/doi/10.1002/9781118557662.ch3/summary Stefan Landis,Lithography, Chapter 3: E-beam Lithography]
*[https://www.microchemicals.com/downloads/application_notes.html Application notes] from MicroChemicals GmbH, e.g. [https://www.microchemicals.com/technical_information/lithography_trouble_shooting.pdf Lithography Trouble-Shooter]
*[https://www.microchemicals.com/downloads/application_notes.html Application notes] from MicroChemicals GmbH, e.g. [https://www.microchemicals.com/dokumente/application_notes/lithography_trouble_shooting.pdf Lithography Trouble-Shooter]




Line 288: Line 163:
*Lithography TPT lecture videos:
*Lithography TPT lecture videos:
**Current version (6 videos, 1:28 hours:minutes in total) on [https://www.youtube.com/playlist?list=PLjWVU97LayHCp7x9OujmVlZWLAnK4CDFR YouTube]
**Current version (6 videos, 1:28 hours:minutes in total) on [https://www.youtube.com/playlist?list=PLjWVU97LayHCp7x9OujmVlZWLAnK4CDFR YouTube]
**Old version (7 videos, 2:41 hours in total) on [https://www.youtube.com/watch?v=hMgpRSOokxE&list=PLjWVU97LayHCHDueZ8qdT1LXJLGr4wLOa YouTube]
**Old version (7 videos, 2:41 hours in total) on [https://www.youtube.com/playlist?list=PLjWVU97LayHCHDueZ8qdT1LXJLGr4wLOa YouTube]
*A full [https://www.youtube.com/watch?v=TdwUGOxCdUc&index=39&list=PLM2eE_hI4gSDjK4SiDbhpmpjw31Xyqfo_ lecture series] from a UT Austin course on microfabrication by "litho guru" Chris Mack. Half of the lectures are on (projection) lithography :-)
*A full [https://www.youtube.com/watch?v=TdwUGOxCdUc&index=39&list=PLM2eE_hI4gSDjK4SiDbhpmpjw31Xyqfo_ lecture series] from a UT Austin course on microfabrication by "litho guru" Chris Mack. Half of the lectures are on (projection) lithography :-)


Line 315: Line 190:
*[https://www.youtube.com/watch?v=btinNzYnLnY Training Video: Manual Puddle Developer]
*[https://www.youtube.com/watch?v=btinNzYnLnY Training Video: Manual Puddle Developer]
'''Playlists on YouTube:'''
'''Playlists on YouTube:'''
*[https://www.youtube.com/watch?v=3JhM3rmLVpA&list=PLjWVU97LayHAiCabstMfAUeeWyQoQI_cV Maskless aligner training videos]
*[https://www.youtube.com/playlist?list=PLjWVU97LayHAiCabstMfAUeeWyQoQI_cV Maskless aligner (MLA) training videos]
*[https://www.youtube.com/watch?v=3JhM3rmLVpA&list=PLjWVU97LayHCX4sz2AH_YiPbNRmkrBYe5 Old Lithography TPT training videos]
*[https://www.youtube.com/playlist?list=PLjWVU97LayHCX4sz2AH_YiPbNRmkrBYe5 Lithography equipment training videos (old)]




| style="width: 20%"; valign="top"|
| style="width: 20%"; valign="top"|
'''<big>Manuals</big>'''<br>
'''<big>Manuals</big>'''
'''NB: Access to manuals require login'''
''NB: Access to manuals require DTU login''
*Automatic Spin Coater: [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=359 Spin Coater: Gamma UV]
*Automatic Spin Coater: [https://labmanager.dtu.dk/d4mb/show.php?dokId=4140&mach=359 Spin Coater: Gamma UV]
*Manual Spin Coater: [http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=362 Spin Coater: Labspin 02] or [http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=387 Spin Coater: Labspin 03]
*Manual Spin Coater: [https://labmanager.dtu.dk/d4mb/show.php?dokId=5073&mach=362 Spin Coater: Labspin 02] or [https://labmanager.dtu.dk/d4mb/show.php?dokId=5074&mach=387 Spin Coater: Labspin 03]
*UV Mask Aligner: [http://labmanager.dtu.dk/d4Show.php?id=3822&mach=339 Aligner: MA6 - 2] or [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=44 KS Aligner]
*Maskless Aligners: [https://labmanager.dtu.dk/d4mb/show.php?dokId=4975&mach=422 MLA 01] or [https://labmanager.dtu.dk/d4mb/show.php?dokId=6270&mach=440 MLA 02] or [https://labmanager.dtu.dk/d4mb/show.php?dokId=6618&mach=464 MLA 02]
*Automatic Puddle Developer: [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=329 Developer: TMAH UV-lithography]
*UV Mask Aligner: [https://labmanager.dtu.dk/d4mb/show.php?dokId=3822&mach=339 MA6-2]
*Manual Puddle Developer: [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=324 Developer: TMAH Manual]
*Automatic Puddle Developer: [https://labmanager.dtu.dk/d4mb/show.php?dokId=3561&mach=329 Developer: TMAH UV-lithography]
*Manual E-beam Developer: [http://labmanager.dtu.dk/d4Show.php?id=5070&mach=341 Developer: E-beam Manual]
*Manual Puddle Developer: [https://labmanager.dtu.dk/d4mb/show.php?dokId=3274&mach=324 Developer: TMAH Manual]
*Manual E-beam Developer: [https://labmanager.dtu.dk/d4mb/show.php?dokId=20599&mach=527 Developer: E-beam Manual]




'''<big>Process Flows</big>'''
'''<big>Process Flows</big>'''
*[[Specific_Process_Knowledge/Lithography/Resist#UV_resist_comparison_table|UV resist process flows]]
*[[Specific_Process_Knowledge/Lithography/Resist#UV_resist_comparison_table|UV resist process flows]]
*[[Specific_Process_Knowledge/Lithography/EBeamLithography#E-beam_resists_and_Process_flow|E-beam resist process flows]]
*[[Specific_Process_Knowledge/Lithography/EBeamLithography/FirstEBL#Resist_coating|E-beam resist process flows]]
*[[:Media:Process_Flow_TPT first print.pdf|Old TPT process flow (first print)]]
*[[:Media:Process_Flow_TPT alignment.pdf|Old TPT process flow (alignment)]]
|}
|}
<br clear="all" />
<br clear="all" />

Latest revision as of 17:06, 2 April 2025

The contents on this page, including all images and pictures, was created by DTU Nanolab staff unless otherwise stated.

Feedback to this page: click here

Lithography

Lithography is a method used for transferring a pattern from a physical or digital mask onto the substrate. At DTU Nanolab we have four different types of lithography available:


Comparing lithography methods at DTU Nanolab

UV Lithography DUV Stepper Lithography E-beam Lithography Nano Imprint Lithography
Generel description Pattern transfer via ultraviolet (UV) light Pattern transfer via deep ultraviolet (DUV) light Patterning by electron beam Pattern transfer via hot embossing (HE)
Pattern size range ~1 µm and up
(resist type, thickness, and pattern dependent)
~200 nm and up
(pattern type, shape and pitch dependent)
~10-1000 nm
(and larger at high currents)
~20 nm and up
Resist type

UV sensitive:

  • AZ 5214E, AZ 4562, AZ MiR 701 (positive)
  • AZ 5214E, AZ nLOF 2020, SU-8 (negative)

DUV sensitive:

  • JSR KRF M230Y, JSR KRF M35G (positive)
  • UVN2300-0.8 (negative)

E-beam sensitive:

  • AR-P6200 CSAR, ZEP502A , PMMA (positive)
  • HSQ, mr-EBL, AR-N 7520 (negative)

Imprint polymers:

  • Topas
  • PMMA
  • mr-I 7030R
Resist thickness range ~0.5 µm to 200 µm ~50 nm to 2 µm ~30 nm to 1 µm ~100 nm to 2 µm
Typical exposure time Mask aligner: 10-180 s per wafer
Maskless aligner: 5-60 minutes per wafer

Process dependent:

  • Pattern
  • Pattern area
  • Dose

Throughput is up to 60 wafers/hour

Process dependent:

  • Dose [µC/cm2]:
  • Beam current [A]:
  • Pattern area [cm2]:

Process time [s]:

Process dependent, including heating/cooling rates
Substrate size
  • chips down to 3 mm x 3 mm
  • 50 mm wafers
  • 100 mm wafers
  • 150 mm wafers
  • 200 mm wafers
  • 100 mm wafers
  • 150 mm wafers
  • 200 mm wafers

We have cassettes fitting:

  • 4 small samples (slit openings: 20mm, 12mm, 8mm, 4mm)
  • 6 wafers of 50 mm in size
  • 3 wafers of 100 mm in size
  • 1 wafer of 150 mm in size
  • 1 wafer of 200 mm in size

Only one cassette can be loaded at a time

  • small samples
  • 50 mm wafers
  • 100 mm wafers
  • 150 mm wafers
Allowed materials Any standard cleanroom material Any standard cleanroom material

Any standard cleanroom material, except:

  • Materials that will degas
  • Graphene requires special treatment
Any standard cleanroom material


Equipment and Process Pages

Pre-lithography


Getting started with UV lithography

Resist

Substrate Pre-treatment

Coating


Automatic spin coating

Manual spin coating

Spray coating

Soft & hard baking

Exposure/design transfer


UV Exposure Tools

Deep-UV Exposure

Electron Beam Exposure

Nano Imprint Lithography

Development


Manual development

SU-8 development

Semi-automatic puddle development

Automatic puddle development

Post-lithography


Descum

Lift-off

Strip


Lithography Tool Package Training

DTU Nanolab offers a Tool Package Training for Lithography (TPT Lithography). You are required to pass this course, in order to get access to the lithography equipment inside the DTU Nanolabs cleanroom facility. The course includes theory on lithographic processes and training videos for equipment operation. The theory part consists of lecture videos followed by quizzes for each section. Once completed successfully, you can do the online training that explains the operation for the specific lithography equipment you want to use in more detail. After completing the online training, you can request hands-on training for the equipment inside the cleanroom via training@nanolab.dtu.dk.

The course is available via DTU Learn. You sign up for the course by enrolling yourself in the course here.

Course Layout

  1. Online lecture videos (theory)
  2. Quizzes for each section
  3. Online training videos (equipment operation)
  4. Individual hands-on training


Individual hands-on training can be requested via training@nanolab.dtu.dk.

Learning objectives

  • Coating
  • Exposure
  • Development
  • Resist, substrates and pre-treatment
  • Post-lithography steps


Qualifying Prerequisites

  • Cleanroom safety course at DTU Nanolab
  • Admission to the cleanroom must be obtained before the group training session


Course Responsible

  • Jens Hindborg Hemmingsen
  • Thomas Aarøe Anhøj


If you have questions you can contact us via lithography@nanolab.dtu.dk.



Knowledge and Information about Lithography

Literature


Lecture videos

  • Lithography TPT lecture videos:
    • Current version (6 videos, 1:28 hours:minutes in total) on YouTube
    • Old version (7 videos, 2:41 hours in total) on YouTube
  • A full lecture series from a UT Austin course on microfabrication by "litho guru" Chris Mack. Half of the lectures are on (projection) lithography :-)

Training videos

Playlists on YouTube:


Manuals NB: Access to manuals require DTU login


Process Flows