Jump to content

Specific Process Knowledge/Etch/III-V ICP/InP-InGaAsP-InGaAs: Difference between revisions

Bghe (talk | contribs)
Mmat (talk | contribs)
 
(3 intermediate revisions by one other user not shown)
Line 80: Line 80:
<br>
<br>
This work was done with great inspiration from the following articles:
This work was done with great inspiration from the following articles:
*Sidewall passivation assisted by a silicon coverplate during and HBr inductively coupled plasma etching of InP for photonic devices ''by S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert'', Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 26, 666 (2008); doi: 10.1116/1.2898455
*'''Sidewall passivation assisted by a silicon coverplate during and HBr inductively coupled plasma etching of InP for photonic devices''' ''by S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert'', Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 26, 666 (2008); doi: 10.1116/1.2898455


*Optimization of a inductively coupled plasma etching process adapted to
*'''Optimization of a inductively coupled plasma etching process adapted to nonthermalized InP wafers for the realization of deep ridge heterostructures''', ''by S. Guilet, S. Bouchoule, C. Jany, C. S. Corr, and P. Chabert'', Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24, 2381 (2006); doi: 10.1116/1.2348728
nonthermalized InP wafers for the realization of deep ridge heterostructures, ''by S. Guilet, S. Bouchoule, C. Jany, C. S. Corr, and P. Chabert'', Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24, 2381 (2006); doi: 10.1116/1.2348728
 
*'''Investigation of InP etching mechanisms in a inductively coupled plasma by optical emission spectroscopy''', ''by L. Gatilova, S. Bouchoule, S. Guilet, and P. Chabert'', Journal of Vacuum Science & Technology A 27, 262 (2009); doi: 10.1116/1.3071950




Line 262: Line 263:


Image:S0_oxide_05.jpg|Sample S0: Top view of the oxide mask before etching. It is the TRAVKA50 mask, but it is clear that the CD reduction is about the 1-1.5 µm of the lines.
Image:S0_oxide_05.jpg|Sample S0: Top view of the oxide mask before etching. It is the TRAVKA50 mask, but it is clear that the CD reduction is about the 1-1.5 µm of the lines.
Image:none
Image:S4_06.jpg|Sample S4: Profile view. The recipe InP etch has been used. <br> The sample has been run on a SiO2 carrier wafer. <br> There is not much CD change compared to the oxide mask before the etch. <br> It seems like the SiO2 mask is gone and the sidewall angle from the mask has been transferred into the sample. <br> The sidewall profile is quit vertical in the lower part. <br> Etch time 15 min <br> Etch depth in large open areas: 9.19µm
Image:S4_06.jpg|Sample S4: Profile view. The recipe InP etch has been used. <br> The sample has been run on a SiO2 carrier wafer. <br> There is not much CD change compared to the oxide mask before the etch. <br> It seems like the SiO2 mask is gone and the sidewall angle from the mask has been transferred into the sample. <br> The sidewall profile is quit vertical in the lower part. <br> Etch time 15 min <br> Etch depth in large open areas: 9.19µm
Image:S5_05.jpg|Sample S5: Profile view. The recipe InP etch has been used but with modified Cl2 and N2 flows: N2=30 sccm Cl2=30 sccm. <br> The sample has been run on a SiO2 carrier wafer. <br> There is not much CD change compared to the oxide mask before the etch. <br> It seems like the SiO2 mask is gone. <br> The sidewall profile is overcutting probably due to too little passivation. <br> Etch time 10 min <br> Etch depth in large open areas: 11.82µm
Image:S5_05.jpg|Sample S5: Profile view. The recipe InP etch has been used but with modified Cl2 and N2 flows: N2=30 sccm Cl2=30 sccm. <br> The sample has been run on a SiO2 carrier wafer. <br> There is not much CD change compared to the oxide mask before the etch. <br> It seems like the SiO2 mask is gone. <br> The sidewall profile is overcutting probably due to too little passivation. <br> Etch time 10 min <br> Etch depth in large open areas: 11.82µm