Specific Process Knowledge/Etch/DRIE-Pegasus/Pegasus-2/ORE with Al2O3 mask

From LabAdviser

Feedback to this page: click here


THIS PAGE IS UNDER CONSTRUCTION

By Maria Farinha @nanolab, Jan 2023

Important! The pressure settings used below may no longer be permitted, always check with the Dry etch group.

As stated by Nguyen et al., the SF6 and O2 fluxes are only separated after 4 s during the C-step. Shorter time steps than that do not execute the function of the clearing. After testing recipes with only 2 s of clearing and with no clear step, it was understood it could be eliminated, showing more depth as well as less undercut when going for shorter cycles. From then on, not CORE but ORE recipes were applied D/E = O/RE.
Moreover, during the E-step, the MFC (mass flow controller) presented a delay to read the pressure when compared with the power, creating unwanted bias. To fight it, the E-step was divided into E1 and E2. The E1 of only 2 s is enough to stabilize the pressure, and E2 the profile is etch correctly, without the unwanted bias.

CORE process graphics and recipes: a) unwanted DC bias during the E-step; b) E-step separated into two steps, E1 decreased the bias.

Pillars

Pillars with different etching times.
1μm Pillar recipe from March 2022
Time (s) Pressure (valve control) O2 flow (SCCM) SF6 flow (SCCM) Platen power (W)
O-step 10 3% 200 0 40
R-step 10 100% 0 5 40
E1-step 2 4% 0 350 40
E2-step 7 4% 0 350 300



Holes

1μm holes recipe from March 2022
Time (s) Pressure (valve control) O2 flow (SCCM) SF6 flow (SCCM) Platen power (W)
O-step
R-step
E1-step
E2-step


Nanoholes

200nm nanoholes recipe from March 2022
Time (s) Pressure (valve control) O2 flow (SCCM) SF6 flow (SCCM) Platen power (W)
O-step
R-step
E1-step
E2-step

Isotropic etch