Specific Process Knowledge/Lithography/EBeamLithography/Dose Testing: Difference between revisions
Appearance
| Line 49: | Line 49: | ||
=Dose modulation in JDF= | =Dose modulation in JDF= | ||
The '''MODULAT''' command can be used to modulate the base dose for a pattern and hence it can be used to generate a dose matrix. In this setup the SDF will contain a base dose defined by the '''RESIST''' command, this dose will then be modulated for different pattern instances defined in the referenced JDF. In this setup the SDF will only contain a single sequence as below. | |||
<pre> | <pre> | ||
| Line 67: | Line 68: | ||
</pre> | </pre> | ||
The arrray is setup with the '''ARRAY''' command in the JDF and at the end of the '''ASSIGN''' command a dose modulation can be applied. In this way each instance assignment can contain a different modulation. In the example below the pattern is instanced in a 10 x 1 matrix, each element has its own modulation table; SHOT1 to SHOT10. The definition of each modulation is stated at the end of the layer definition. | |||
Each array element is assigned a dose modulation using the MODULAT command. The MODULAT command takes two parameters as MODULAT(r,v), where r is the shot rank and v is the shot time modulation in %. The shot rank is defined during export from Beamer. For a simple design as used in this example that is not proximity corrected all elements of the pattern will be in shot rank 0. If a design is proximity corrected pattern elements will be assigned to different shot ranks. The shot time modulation is a simple percentage increase to the base dose defined by the RESIST command in the SDF. The modulation table in this example will thus expose with a base dose of 200 µC/cm<sup>2</sup> in element (1,1) and a dose of 200 µC/cm<sup>2</sup> + 45% = 290 µC/cm<sup>2</sup> in element (10,1). The resulting pattern and modulation is visualised below. | Each array element is assigned a dose modulation using the MODULAT command. The MODULAT command takes two parameters as MODULAT(r,v), where r is the shot rank and v is the shot time modulation in %. The shot rank is defined during export from Beamer. For a simple design as used in this example that is not proximity corrected all elements of the pattern will be in shot rank 0. If a design is proximity corrected pattern elements will be assigned to different shot ranks. The shot time modulation is a simple percentage increase to the base dose defined by the RESIST command in the SDF. The modulation table in this example will thus expose with a base dose of 200 µC/cm<sup>2</sup> in element (1,1) and a dose of 200 µC/cm<sup>2</sup> + 45% = 290 µC/cm<sup>2</sup> in element (10,1). The resulting pattern and modulation is visualised below. | ||