Jump to content

Specific Process Knowledge/Characterization/XPS/NexsaOverview: Difference between revisions

Jmli (talk | contribs)
No edit summary
Jmli (talk | contribs)
Line 23: Line 23:
| align="center" style="background:#f0f0f0;" |'''Type'''
| align="center" style="background:#f0f0f0;" |'''Type'''
| align="center" style="background:#f0f0f0;"|'''Author'''
| align="center" style="background:#f0f0f0;"|'''Author'''
| align="center" style="background:#f0f0f0;"|'''Web of Science'''
| align="center" style="background:#f0f0f0;"|'''Link'''
| align="center" style="background:#f0f0f0;" |'''XPS'''
| align="center" style="background:#f0f0f0;" |'''XPS'''
| align="center" style="background:#f0f0f0;" |'''UPS'''
| align="center" style="background:#f0f0f0;" |'''UPS'''
Line 44: Line 44:
| [[media:AN52476-confirming-layer-structure-organic-fet-device.pdf | Confirming the layer structure of an organic FET device]]||Application note||P Mack ||||X||||||||||MAGCIS||Organic FET's,||
| [[media:AN52476-confirming-layer-structure-organic-fet-device.pdf | Confirming the layer structure of an organic FET device]]||Application note||P Mack ||||X||||||||||MAGCIS||Organic FET's,||
|-
|-
| [[media:Bare-2016-Surface-analysis-of-zeolites-an-xps.pdf |Surface analysis of zeolites: An XPS, variable kinetic energy XPS, and low energy ion scattering study]]||Publication||SR Bare||[http://apps.webofknowledge.com.proxy.findit.dtu.dk/CitedFullRecord.do?product=WOS&colName=WOS&SID=F6P8vdNQigRKywglhCq&search_mode=CitedFullRecord&isickref=WOS:000374198600054 link]||X||||X||||||||Zeolites, Metal oxides||<span title="The surface Si/Al ratio in a series of zeolite Y samples has been obtained using laboratory XPS, synchrotron (variable kinetic energy) XPS, and low energy ion scattering (LEIS) spectroscopy. The non-destructive depth profile obtained using variable kinetic energy XPS is compared to that from the destructive argon ion bombardment depth profile from the lab XPS instrument. All of the data indicate that the near surface region of both the ammonium form and steamed Y zeolites is strongly enriched in aluminum. It is shown that when the inelastic mean free path of the photoelectrons is taken into account the laboratory XPS of aluminosilicates zeolites does not provide a true measurement of the surface stoichiometry, while variable kinetic energy XPS results in a more surface sensitive measurement. A comprehensive Si/Al concentration profile as a function of depth is developed by combining the data from the three surface characterization techniques. The LEIS spectroscopy reveals that the topmost atomic layer is further enriched in Al compared to subsequent layers.">Abstract</span>
| [[media:Bare-2016-Surface-analysis-of-zeolites-an-xps.pdf |Surface analysis of zeolites: An XPS, variable kinetic energy XPS, and low energy ion scattering study]]||Publication||SR Bare||[https://doi-org.proxy.findit.cvt.dk/10.1016/j.susc.2015.10.048 link]||X||||X||||||||Zeolites, Metal oxides||<span title="The surface Si/Al ratio in a series of zeolite Y samples has been obtained using laboratory XPS, synchrotron (variable kinetic energy) XPS, and low energy ion scattering (LEIS) spectroscopy. The non-destructive depth profile obtained using variable kinetic energy XPS is compared to that from the destructive argon ion bombardment depth profile from the lab XPS instrument. All of the data indicate that the near surface region of both the ammonium form and steamed Y zeolites is strongly enriched in aluminum. It is shown that when the inelastic mean free path of the photoelectrons is taken into account the laboratory XPS of aluminosilicates zeolites does not provide a true measurement of the surface stoichiometry, while variable kinetic energy XPS results in a more surface sensitive measurement. A comprehensive Si/Al concentration profile as a function of depth is developed by combining the data from the three surface characterization techniques. The LEIS spectroscopy reveals that the topmost atomic layer is further enriched in Al compared to subsequent layers.">Abstract</span>
|-
|-
| [[media:Brongersma-2007-Surface-composition-analysis-by-low.pdf | Surface composition analysis by low-energy ion scattering]]||Publication, background||H H Brongersma||[http://apps.webofknowledge.com.proxy.findit.dtu.dk/CitedFullRecord.do?product=WOS&colName=WOS&SID=F6P8vdNQigRKywglhCq&search_mode=CitedFullRecord&isickref=WOS:000245323100001&cacheurlFromRightClick=no link]||||||X||||||||||<span title="Low-energy ion scattering (LEIS) is an analytical tool that provides information on the atomic composition of the outer surface, when noble gas ions are used as projectiles. In fact, quantitative composition analysis is currently done on a huge variety of materials, including catalysts and organic materials. The information on the surface composition is contained in the signal of backscattered ions (typically 1–3 keV He+, Ne+). In order to translate the LEIS signal to an elemental surface concentration all factors determining the LEIS signal must be known. These are in particular the scattering cross section and the ion fraction of the backscattered particles. The scattering cross section, which is due to the screened electrostatic potential between target atom and projectile, is well-known for the prevailing conditions of LEIS. It is an intriguing fact that, despite the large quantity of successful applications, the charge exchange processes in LEIS are not yet fully understood. It is e.g. not known why in LEIS for a given atomic species on the surface the signal usually does not depend on which other species are present (absence of matrix effects). Significant progress has recently been made in the understanding of the underlying charge exchange processes. Therefore, the aim of this review is twofold: on the one hand, to summarize the present understanding of the factors that determine the ion fraction of the scattered projectiles in LEIS, i.e. charge exchange processes. On the other hand, to summarize how quantitative surface composition analysis can be accomplished. In addition, we critically review publications that deal with surface composition analysis by LEIS, and analyze in which cases and by what means this was achieved and where and why it was successful or failed. After reading this review the reader will be able to deal with the pitfalls encountered in LEIS and to choose preferred experimental conditions for quantitative surface composition analysis.">Abstract</span>
| [[media:Brongersma-2007-Surface-composition-analysis-by-low.pdf | Surface composition analysis by low-energy ion scattering]]||Publication, background||H H Brongersma||[http://apps.webofknowledge.com.proxy.findit.dtu.dk/CitedFullRecord.do?product=WOS&colName=WOS&SID=F6P8vdNQigRKywglhCq&search_mode=CitedFullRecord&isickref=WOS:000245323100001&cacheurlFromRightClick=no link]||||||X||||||||||<span title="Low-energy ion scattering (LEIS) is an analytical tool that provides information on the atomic composition of the outer surface, when noble gas ions are used as projectiles. In fact, quantitative composition analysis is currently done on a huge variety of materials, including catalysts and organic materials. The information on the surface composition is contained in the signal of backscattered ions (typically 1–3 keV He+, Ne+). In order to translate the LEIS signal to an elemental surface concentration all factors determining the LEIS signal must be known. These are in particular the scattering cross section and the ion fraction of the backscattered particles. The scattering cross section, which is due to the screened electrostatic potential between target atom and projectile, is well-known for the prevailing conditions of LEIS. It is an intriguing fact that, despite the large quantity of successful applications, the charge exchange processes in LEIS are not yet fully understood. It is e.g. not known why in LEIS for a given atomic species on the surface the signal usually does not depend on which other species are present (absence of matrix effects). Significant progress has recently been made in the understanding of the underlying charge exchange processes. Therefore, the aim of this review is twofold: on the one hand, to summarize the present understanding of the factors that determine the ion fraction of the scattered projectiles in LEIS, i.e. charge exchange processes. On the other hand, to summarize how quantitative surface composition analysis can be accomplished. In addition, we critically review publications that deal with surface composition analysis by LEIS, and analyze in which cases and by what means this was achieved and where and why it was successful or failed. After reading this review the reader will be able to deal with the pitfalls encountered in LEIS and to choose preferred experimental conditions for quantitative surface composition analysis.">Abstract</span>