Specific Process Knowledge/Etch/DRIE-Pegasus/Pegasus-2/OldConfig: Difference between revisions

From LabAdviser
Jmli (talk | contribs)
No edit summary
Jmli (talk | contribs)
No edit summary
Line 5: Line 5:


=== Past configurations ===
=== Past configurations ===
==== Configuration and setup valid March 2021 to August 2021  ====
{{Template:Peg2configheader1
|TableHeader= Currently valid from March 15 2021 onwards
}}
{{Template:Peg2configcontent1
|ItemName= Available gasses and gas chemistry
|ItemConfiguration= '''Available gasses:'''
* SF<sub>6</sub>: 50 sccm
* O<sub>2</sub>: 50 sccm
* Ar: 283
* N<sub>2</sub>: 500 sccm
* He: 11 sccm
'''Not available:'''
* C<sub>4</sub>F<sub>8</sub> (H<sub>2</sub> currently fitted but closed) : 0 sccm
* CO<sub>2</sub>: (It is not in the software)
|ItemComment=OnlySF<sub>6</sub> and O<sub>2</sub> are used for Si, PR, and Cr etch. The rest is only make-up
}}
{{Template:Peg2configcontent1
|ItemName= Plasma source heaters
|ItemConfiguration=Applies to
* Plenum Heater
* Inner Heater
* Magnetic Confinement Heater
* Chamber Heater
|ItemComment= The temperature on the heaters in the plasma source are set to 20 degrees with a high tolerance. This essentially corresponds to powered off compared to default Pegasus temperatures which are in the 120-140 degrees range.
Always make sure that the temperature settings in the recipes are ''not'' enabled. Click [[Specific Process Knowledge/Etch/DRIE-Pegasus/Pegasus-2/TemperatureSettings |'''here''']] to have more information.
}}
{{Template:Peg2configcontent1
|ItemName= RF power and pressure settings
|ItemConfiguration= All recipes run without coil power, very low platen power and low pressures
|ItemComment=None of the recipes use coil power in order to prevent aluminium fluoride formation at the aluminium oxide dome. These particles may drop on the wafer or chuck and cause abnormalitites.
Most of the recipes rely on very low pressure and low power - 0.2 mTorr and 10 Watt platen power is not an error and easily supports the plasma.
}}
{{Template:Peg2configcontent1
|ItemName= Carbon free plasmas
|ItemConfiguration= The process chamber does not have any carbon containing etch gasses. Therefore, polymer build-up on the chamber walls is not an issue. The 'carbon free' policy does not, however, apply to the choice of masking materials and CSAR, AZ and DUV resists are allowed.
|ItemComment=
}}
{{Template:Peg2configcontent1
|ItemName= Chamber conditioning and cleaning
|ItemConfiguration= Running long oxygen cleans is not necessary and must be avoided. Neither are shorter cleans between wafers.
|ItemComment= The absence of carbon containing etch gasses ensures that the process chamber is kept clean.
}}
{{Template:Peg2configcontent1
|ItemName= Approved recipes
|ItemConfiguration= The 'std' folder holds the list of currently allowed recipes
|ItemComment= Recipes in other folders may no longer be safe to run.
}}
{{Template:Peg2configcontent1
|ItemName= Etch of nickel and chromium
|ItemConfiguration= Recipes for etching nickel and chromium have been developed
|ItemComment= The cross contamination consequences have yet to be determined
}}
{{Template:Peg2configcontent1
|ItemName= Background knowledge required for safe operation
|ItemConfiguration= Users and supervisors of Pegasus-2 should carefully read the 3 papers listed in the comments in order to have a correct understanding of the etch process and experimental procedure and how it relates to the Bosch etch performance.
|ItemComment= Papers:
*[[media:Black silicon on demand.pdf | On the formation of black silicon in SF6-O2 plasma: The clear, oxidize, remove, and etch (CORE) sequence and black silicon on demand]]
*[[media:The CORE sequence.pdf | The CORE Sequence: A Nanoscale Fluorocarbon-Free Silicon Plasma Etch Process Based on SF<sub>6</sub>/O<sub>2</sub> Cycles with Excellent 3D Profile Control at Room Temperature ]]
*[[media:Ultrahigh aspect ratio etching and Cr mask.pdf | Ultrahigh aspect ratio etching of silicon in SF<sub>6</sub>-O<sub>2</sub> plasma: The clear-oxidize-remove etch (CORE) sequence and chromium mask]]
}}
|}


==== Configuration and setup valid November 2020 to March 2021 ====
==== Configuration and setup valid November 2020 to March 2021 ====

Revision as of 12:46, 17 August 2021

Feedback to this page: click here

Past configurations

Configuration and setup valid March 2021 to August 2021

Currently valid from March 15 2021 onwards
Item The currently applied modification Comments
Available gasses and gas chemistry Available gasses:
  • SF6: 50 sccm
  • O2: 50 sccm
  • Ar: 283
  • N2: 500 sccm
  • He: 11 sccm

Not available:

  • C4F8 (H2 currently fitted but closed) : 0 sccm
  • CO2: (It is not in the software)
OnlySF6 and O2 are used for Si, PR, and Cr etch. The rest is only make-up
Plasma source heaters Applies to
  • Plenum Heater
  • Inner Heater
  • Magnetic Confinement Heater
  • Chamber Heater
The temperature on the heaters in the plasma source are set to 20 degrees with a high tolerance. This essentially corresponds to powered off compared to default Pegasus temperatures which are in the 120-140 degrees range.

Always make sure that the temperature settings in the recipes are not enabled. Click here to have more information.

RF power and pressure settings All recipes run without coil power, very low platen power and low pressures None of the recipes use coil power in order to prevent aluminium fluoride formation at the aluminium oxide dome. These particles may drop on the wafer or chuck and cause abnormalitites.

Most of the recipes rely on very low pressure and low power - 0.2 mTorr and 10 Watt platen power is not an error and easily supports the plasma.

Carbon free plasmas The process chamber does not have any carbon containing etch gasses. Therefore, polymer build-up on the chamber walls is not an issue. The 'carbon free' policy does not, however, apply to the choice of masking materials and CSAR, AZ and DUV resists are allowed.
Chamber conditioning and cleaning Running long oxygen cleans is not necessary and must be avoided. Neither are shorter cleans between wafers. The absence of carbon containing etch gasses ensures that the process chamber is kept clean.
Approved recipes The 'std' folder holds the list of currently allowed recipes Recipes in other folders may no longer be safe to run.
Etch of nickel and chromium Recipes for etching nickel and chromium have been developed The cross contamination consequences have yet to be determined
Background knowledge required for safe operation Users and supervisors of Pegasus-2 should carefully read the 3 papers listed in the comments in order to have a correct understanding of the etch process and experimental procedure and how it relates to the Bosch etch performance. Papers:


Configuration and setup valid November 2020 to March 2021

Currently valid from November 2020 onwards
Item The currently applied modification Comments
Available gasses and gas chemistry Available gasses:
  • SF6: 50 sccm
  • O2: 50 sccm
  • Ar: 283
  • N2: 500 sccm
  • He: 11 sccm

Not available:

  • C4F8 (H2 currently fitted but closed) : 0 sccm
  • CO2: (It is not in the software)
OnlySF6 and O2 are used for Si, PR, and Cr etch. The rest is only make-up
Plasma source heaters Applies to
  • Plenum Heater
  • Inner Heater
  • Magnetic Confinement Heater
  • Chamber Heater
The temperature on the heaters in the plasma source are set to 20 degrees with a high tolerance. This essentially corresponds to powered off compared to default Pegasus temperatures which are in the 120-140 degrees range.

Always make sure that the temperature settings in the recipes are not enabled. Click here to have more information.

RF power and pressure settings All recipes run without coil power, very low platen power and low pressures None of the recipes use coil power in order to prevent aluminium fluoride formation at the aluminium oxide dome. These particles may drop on the wafer or chuck and cause abnormalitites.

Most of the recipes rely on very low pressure and low power - 0.2 mTorr and 10 Watt platen power is not an error and easily supports the plasma.

Carbon free plasmas The process chamber does not have any carbon containing etch gasses. Therefore, polymer build-up on the chamber walls is not an issue. The 'carbon free' policy does not, however, apply to the choice of masking materials and CSAR, AZ and DUV resists are allowed.
Chamber conditioning and cleaning Running long oxygen cleans is not necessary and must be avoided. Neither are shorter cleans between wafers. The absence of carbon containing etch gasses ensures that the process chamber is kept clean.
Approved recipes The 'std' folder holds the list of currently allowed recipes Recipes in other folders may no longer be safe to run.
Etch of nickel and chromium Recipes for etching nickel and chromium have been developed The cross contamination consequences have yet to be determined



As of December 2020 there is not yet any old configurations.


Access to Pegasus 2 configuration templates

Pegasus 2 configuration table version 1