Template:SEM comparison table 314: Difference between revisions
No edit summary |
No edit summary |
||
Line 51: | Line 51: | ||
|- | |- | ||
|style="background: | |style="background:Whitesmoke; color:black" rowspan="2" align="left" |'''Resolution''' | ||
|style="background:Whitesmoke; color:black" colspan="5" align="center"| The resolution of a SEM is strongly dependent on sample type and the operator. Resolution quoted is using sputtered gold on carbon | |style="background:Whitesmoke; color:black" colspan="5" align="center"| The resolution of a SEM is strongly dependent on sample type and the operator. Resolution quoted is using sputtered gold on carbon | ||
|- | |- |
Revision as of 11:31, 24 March 2020
Equipment | Nova | QFEG | AFEG | Helios | |
---|---|---|---|---|---|
Purpose |
|
|
|
| |
Equipment position | Building 314 Room 060 | Building 314 Room 011 | Building 314 Room 034 | Building 314 Room 061 | |
Resolution | The resolution of a SEM is strongly dependent on sample type and the operator. Resolution quoted is using sputtered gold on carbon | ||||
B |
• 0.8 nm at 30 kV (STEM) • 1.0 nm at 30 kV (SE) • 2.5 nm at 30 kV (BSE) - 3.0 nm at 1 kV (SE)
• 3.0 nm at 1 kV (BD mode + BSE)
•2.5 nm at 30 kV (BSE) •3.0 nm at 3 kV (SE)
•1.4 nm at 30 kV (SE) |
• 0.8 nm at 30 kV (STEM) • 1.0 nm at 30 kV (SE) • 2.5 nm at 30 kV (BSE) - 3.0 nm at 1 kV (SE)
• 3.0 nm at 1 kV (BD mode + BSE)
•2.5 nm at 30 kV (BSE) •3.0 nm at 3 kV (SE) |
•0.8nm @15kV •0.9nm @1kV
•4.5nm @ 30kV | ||
Detectors |
|
|
|
| |
Stage specifications |
|
|
|
| |
Options | B | C | D | E | |
Max sample size | Consult with DTU Nanolab staff as weight, dimensions, pumping capacity and technique all play a roll in the sample size |