Specific Process Knowledge/Thin film deposition/MVD: Difference between revisions

From LabAdviser
Jml (talk | contribs)
Jml (talk | contribs)
Line 4: Line 4:


The Applied Microstructures MVD 100 system deposits molecular films on surfaces. These films serve a wide range of purposes ranging from antistiction coatings of nanoimprint lithography stamps to protecting MEMS structures. They are created as self-assembled monolayers on a surface when a molecular vapor of chemials is present. In most cases the chlorine atoms in the end of an flourinated organosilane react with -OH groups of the surface to form a chemical bond under elimination of HCL.
The Applied Microstructures MVD 100 system deposits molecular films on surfaces. These films serve a wide range of purposes ranging from antistiction coatings of nanoimprint lithography stamps to protecting MEMS structures. They are created as self-assembled monolayers on a surface when a molecular vapor of chemials is present. In most cases the chlorine atoms in the end of an flourinated organosilane react with -OH groups of the surface to form a chemical bond under elimination of HCL.
<gallery caption="Some chemicals of the MVD and the surface reaction" heights="300px" perrow="2">
image:chlorosilanes.jpg| Different chemicals for the MVD.
image:MVDsurfacereaction.jpg|The chemical reaction in which the Cl atoms of the precursors are eliminated under formation of HCl.
</gallery>


{| border="2" cellpadding="2" cellspacing="1"  
{| border="2" cellpadding="2" cellspacing="1"  

Revision as of 20:34, 2 April 2008

The Molecular Vapor Deposition Tool

The MVD is located in cleanroom 1

The Applied Microstructures MVD 100 system deposits molecular films on surfaces. These films serve a wide range of purposes ranging from antistiction coatings of nanoimprint lithography stamps to protecting MEMS structures. They are created as self-assembled monolayers on a surface when a molecular vapor of chemials is present. In most cases the chlorine atoms in the end of an flourinated organosilane react with -OH groups of the surface to form a chemical bond under elimination of HCL.

The flat recipe
O2 plasma Flow 200 sccm
Power 250 Watts
Time 300 seconds
Chemical # 1 (vapor order 1) Name FDTS
Line no. 3
Cycles 4
Pressure 0.500 Torr
Chemical # 2 (vapor order 2) Name Water
Line no. 1
Cycles 1
Pressure 18 Torr
Processing Time 900 seconds
Purge Cycles 5