Specific Process Knowledge/Etch/DRIE-Pegasus/System-description: Difference between revisions
Appearance
| Line 14: | Line 14: | ||
*fast response digtal MFC's mounted on top of the process chamber itself to shorten the gas line | *fast response digtal MFC's mounted on top of the process chamber itself to shorten the gas line | ||
*fast APC valve | *fast APC valve | ||
*fast RF power | *fast RF power supplies | ||
the etch and deposition cycles may be split into three separate phases, called Delay, Boost and Main. Following the arguments from above, the third phase (Delay) may be thought of as a short delay that ensures a very low pressure (and thus extremely good ion directionality) before the ion bombardment. The standard etches on the Pegasus only make use of up to two phases. | the etch and deposition cycles may be split into three separate phases, called Delay, Boost and Main. Following the arguments from above, the third phase (Delay) may be thought of as a short delay that ensures a very low pressure (and thus extremely good ion directionality) before the ion bombardment. The standard etches on the Pegasus only make use of up to two phases. | ||
== Improving the Bosch process == | |||
The showerhead that distributes the process gasses inside the plasma source has been changed. With the new design the gas flow resistance in the gas line from MFC to plasma has been reduced. This has very little or no impact on processes that have a continuous gas flow - i.e. processes that are not switched. However, for processes with several gas flows that switch on and off, the switching from one gas flow to another will be much more well defined. This enables us to run Bosch processes with shorter cycles times. Shorter cycles times means smaller scallops and hence lower roughness and better control. | It is clear that optimizing the Bosch processes on the Pegasus can be done in countless ways. Reducing the cycle time is a very convenient way of getting rid of, or at least reducing, scallops. The faster the process switches the smaller the scallops will be. However, at some point the hardware (MFS's, RF generators, APC valve) cannot keep up with the demand and the process will essentially be continuous causing the Bosch process to break down. In its original setup, the Pegasus had standard processes with cycle durations down to 2 seconds. The hardware on the Pegasus is indeed very fast and allows faster switching. The limiting factor in the Bosch process was identified by Henri Jansen - and we have taken steps to improve this as described below. | ||
In the top of the plasma source sits a showerhead that is intended to distribute the process gasses uniformly so that a uniform etch process is achieved. However, calculations showed that the resistance imposed on the gasses flowing through small holes | |||
caused by small holes in the showerhead | |||
The showerhead that distributes the process gasses inside the plasma source | |||
has been changed. With the new design the gas flow resistance in the gas line from MFC to plasma has been reduced. This has very little or no impact on processes that have a continuous gas flow - i.e. processes that are not switched. However, for processes with several gas flows that switch on and off, the switching from one gas flow to another will be much more well defined. This enables us to run Bosch processes with shorter cycles times. Shorter cycles times means smaller scallops and hence lower roughness and better control. | |||
As stated, we believe that only switched processes will be affected by this change. Continuous processes such as [[Specific Process Knowledge/Etch/DRIE-Pegasus/processC|Process C]], [[Specific Process Knowledge/Etch/DRIE-Pegasus/nanoetch/nano142|Nano1.42]], isotropic etches, barc etches or the black silicon recipes are not believed to be noticeably affected. | As stated, we believe that only switched processes will be affected by this change. Continuous processes such as [[Specific Process Knowledge/Etch/DRIE-Pegasus/processC|Process C]], [[Specific Process Knowledge/Etch/DRIE-Pegasus/nanoetch/nano142|Nano1.42]], isotropic etches, barc etches or the black silicon recipes are not believed to be noticeably affected. | ||