Specific Process Knowledge/Characterization/Topographic measurement: Difference between revisions
Appearance
| Line 9: | Line 9: | ||
*AFMs (AFM Icon-PT1 and AFM Icon-PT2) - ''AFMs for "mechanically" measuring topography (nano-regime)'' | *AFMs (AFM Icon-PT1 and AFM Icon-PT2) - ''AFMs for "mechanically" measuring topography (nano-regime)'' | ||
<br> | <br> | ||
==High | ==High Aspect Ratio Structures== | ||
The fact that the stylus tip of a stylus profiler or an AFM is shaped like a cone with some finite tip angle causes a problem when characterizing high aspect ratio structures. For instance, if a 20 µm wide trench is etched deeper than approximately 18 µm, the tip of the Dektak will not be able to reach the bottom. The optical profiler uses a light beam that is focused through an objective. Therefore it is able to measure higher aspect ratios. The aspect ratio is limited by the possibility for the light to reach the bottom and get back to the detector. On some samples we have been able to measure aspect ratios above 1:10. Otherwise the solution is to cleave the sample along a line that is perpendicular to the trench and then inspect the profile in a [[Specific Process Knowledge/Characterization/SEM: Scanning Electron Microscopy|scanning electron microscope]] or a microscope (for large structures). | The fact that the stylus tip of a stylus profiler or an AFM is shaped like a cone with some finite tip angle causes a problem when characterizing high aspect ratio structures. For instance, if a 20 µm wide trench is etched deeper than approximately 18 µm, the tip of the Dektak will not be able to reach the bottom. The optical profiler uses a light beam that is focused through an objective. Therefore it is able to measure higher aspect ratios. The aspect ratio is limited by the possibility for the light to reach the bottom and get back to the detector. On some samples we have been able to measure aspect ratios above 1:10. Otherwise the solution is to cleave the sample along a line that is perpendicular to the trench and then inspect the profile in a [[Specific Process Knowledge/Characterization/SEM: Scanning Electron Microscopy|scanning electron microscope]] or a microscope (for large structures). | ||
<br> | <br> | ||