Jump to content

LabAdviser/314/Microscopy 314-307/SEM/QFEG: Difference between revisions

Mktracy (talk | contribs)
Mktracy (talk | contribs)
Line 112: Line 112:


== STEM (Scanning Transmission Electron Microscopy) ==
== STEM (Scanning Transmission Electron Microscopy) ==
STEM combines the principles of transmission electron microscopy and scanning electron microscopy and can be performed on either type of instrument. In the STEM setting, the sample requires to have a thickness of less than 200 nm for visualization. Sample preparation prior to STEM microscopy involve samples being embedded in epoxy resin and then ultra section using the [[LabAdviser/314/Preparation_314-307/Soft-matter#Leica_EM_UC7_Ultramicrotome|Ultramicrotome]]. For more sensitive samples that need to be sectionned at cryogenic temperatures (below −180 °C), the thin sections can also be done at Nanolab by using the [[LabAdviser/314/Preparation_314-307/Soft-matter#Leica_EM_FC7_Cryo-Ultramicrotome|Cryo-Ultramicrotome]].
STEM combines the principles of transmission electron microscopy and scanning electron microscopy and can be performed on either type of instrument. In the STEM setting, the sample requires to have a thickness of less than 200 nm for visualization. Sample preparation prior to STEM microscopy involve samples being embedded in epoxy resin and then ultra section using the [[LabAdviser/314/Preparation_314-307/Soft-matter#Leica_EM_UC7_Ultramicrotome|Ultramicrotome]]. For more sensitive samples that need to be sectionned at cryogenic temperatures (below −180 °C), the [[LabAdviser/314/Preparation_314-307/Soft-matter#Leica_EM_FC7_Cryo-Ultramicrotome|Cryo-Ultramicrotome]] can be used for that purpose.


[[File:20210519_Microalgae_K2_007-1.jpg|500px|left|thumb|STEM imaging of a cross section of Microalgae, 100 nm thick section]]<br clear="all" />
[[File:20210519_Microalgae_K2_007-1.jpg|500px|left|thumb|STEM imaging of a cross section of Microalgae, 100 nm thick section]]<br clear="all" />