LabAdviser/314/Microscopy 314-307/SEM/QFEG: Difference between revisions
Appearance
| Line 112: | Line 112: | ||
== STEM (Scanning Transmission Electron Microscopy) == | == STEM (Scanning Transmission Electron Microscopy) == | ||
STEM combines the principles of transmission electron microscopy and scanning electron microscopy and can be performed on either type of instrument. In the STEM setting, the sample requires to have a thickness of less than 200 nm for visualization. Sample preparation prior to STEM microscopy involve samples being embedded in epoxy resin and then ultra section using the [[LabAdviser/314/Preparation_314-307/Soft-matter#Leica_EM_UC7_Ultramicrotome|Ultramicrotome]]. For more sensitive samples that need to be sectionned at cryogenic temperatures (below −180 °C), | STEM combines the principles of transmission electron microscopy and scanning electron microscopy and can be performed on either type of instrument. In the STEM setting, the sample requires to have a thickness of less than 200 nm for visualization. Sample preparation prior to STEM microscopy involve samples being embedded in epoxy resin and then ultra section using the [[LabAdviser/314/Preparation_314-307/Soft-matter#Leica_EM_UC7_Ultramicrotome|Ultramicrotome]]. For more sensitive samples that need to be sectionned at cryogenic temperatures (below −180 °C), the [[LabAdviser/314/Preparation_314-307/Soft-matter#Leica_EM_FC7_Cryo-Ultramicrotome|Cryo-Ultramicrotome]] can be used for that purpose. | ||
[[File:20210519_Microalgae_K2_007-1.jpg|500px|left|thumb|STEM imaging of a cross section of Microalgae, 100 nm thick section]]<br clear="all" /> | [[File:20210519_Microalgae_K2_007-1.jpg|500px|left|thumb|STEM imaging of a cross section of Microalgae, 100 nm thick section]]<br clear="all" /> | ||