Specific Process Knowledge/Characterization/Topographic measurement: Difference between revisions

From LabAdviser
Reet (talk | contribs)
added section with link to comparison of all the film thickness measurement techniques
Reet (talk | contribs)
m →‎Topographic measurements: Altered the structure of section titles
Line 9: Line 9:
*AFMs (AFM Icon-PT1 and AFM Icon-PT2) - ''AFMs for measuring nano structures''
*AFMs (AFM Icon-PT1 and AFM Icon-PT2) - ''AFMs for measuring nano structures''


==High Aspect ratio structures==<br/>
==High Aspect ratio structures==
The fact that the stylus tip of a Dektak profilers or an AFM is shaped like a cone with some finite tip angle causes a problem when characterizing high aspect ratio structures. For instance, if a 20 µm wide trench is etched deeper than approximately 18 µm, the tip of the Dektak will not be able to reach the bottom. The optical profiler uses a light beam that is focused through an objective. Therefore it is able to measure higher aspect ratios. The aspect ratio is limited by the possibility for the light to reach the bottom and get back to the detector. On some samples we have been able to measure aspect ratios above 1:10. Otherwise the solution is to cleave the sample along a line that is perpendicular to the trench and then inspect the profile in a [[Specific Process Knowledge/Characterization/SEM: Scanning Electron Microscopy|scanning electron microscope]] or a microscope (for large structures).
The fact that the stylus tip of a Dektak profilers or an AFM is shaped like a cone with some finite tip angle causes a problem when characterizing high aspect ratio structures. For instance, if a 20 µm wide trench is etched deeper than approximately 18 µm, the tip of the Dektak will not be able to reach the bottom. The optical profiler uses a light beam that is focused through an objective. Therefore it is able to measure higher aspect ratios. The aspect ratio is limited by the possibility for the light to reach the bottom and get back to the detector. On some samples we have been able to measure aspect ratios above 1:10. Otherwise the solution is to cleave the sample along a line that is perpendicular to the trench and then inspect the profile in a [[Specific Process Knowledge/Characterization/SEM: Scanning Electron Microscopy|scanning electron microscope]] or a microscope (for large structures).


==Measurements of thin film thickness==
==Thin film thickness==
It is possible to use the profilers for measuring the thickness of optically transparent thin films or of etched non-transparent thin films. There are also other options for measuring film thickness. All the methods are compared on the [[Specific Process Knowledge/Characterization/Measurement of film thickness and optical constants|Thin film thickness and optical constants measurement page]]
The profilers can be used to measure the thickness of optically transparent thin films or etched non-transparent thin films. There are also other options for measuring film thickness. All the methods are compared on the [[Specific Process Knowledge/Characterization/Measurement of film thickness and optical constants| "Measurement of thin film thickness and optical constants"]] page


===Comparison of the stylus profilers, the optical profilers and the AFMs===
==Comparison of stylus profilers, optical profilers and AFMs at Nanolab==


{|border="1" cellspacing="1" cellpadding="3" style="text-align:left;"  
{|border="1" cellspacing="1" cellpadding="3" style="text-align:left;"  

Revision as of 16:49, 15 April 2020

Feedback to this page: click here

Topographic measurements

Topographic measurements are measurements of height differences on your sample. If you measure many spots on the sample you can get a topographic image of the surface.

At DTU Nanolab we have eight systems for topographic measurements:

  • Dektak stylus profilers (Dektak XTA, Dektak 8, Dektak 150 and Dektak 3ST) - Profilers for measuring micro structures
  • Optical profilers (Optical profiler Sensofar and Optical profiler Filmetrics) - 3D Profilers for measuring micro structures
  • AFMs (AFM Icon-PT1 and AFM Icon-PT2) - AFMs for measuring nano structures

High Aspect ratio structures

The fact that the stylus tip of a Dektak profilers or an AFM is shaped like a cone with some finite tip angle causes a problem when characterizing high aspect ratio structures. For instance, if a 20 µm wide trench is etched deeper than approximately 18 µm, the tip of the Dektak will not be able to reach the bottom. The optical profiler uses a light beam that is focused through an objective. Therefore it is able to measure higher aspect ratios. The aspect ratio is limited by the possibility for the light to reach the bottom and get back to the detector. On some samples we have been able to measure aspect ratios above 1:10. Otherwise the solution is to cleave the sample along a line that is perpendicular to the trench and then inspect the profile in a scanning electron microscope or a microscope (for large structures).

Thin film thickness

The profilers can be used to measure the thickness of optically transparent thin films or etched non-transparent thin films. There are also other options for measuring film thickness. All the methods are compared on the "Measurement of thin film thickness and optical constants" page

Comparison of stylus profilers, optical profilers and AFMs at Nanolab

Dektak 8 stylus profiler Dektak XTA stylus profiler Optical Profiler (Sensofar) Optical Profiler (Filmetrics) AFM Icon 1 and AFM Icon 2 Dektak 150 stylus profiler Dektak 3ST stylus profiler
Generel description Profiler for measuring micro structures. Can do wafer mapping and stress measurements. Profiler for measuring micro structures. Can do wafer mapping and stress measurements. 3D Profiler for measuring micro structures and surface roughness. Can do wafer mapping. 3D Profiler for measuring micro structures and surface roughness. Can do wafer mapping. Positioned in the basement. AFM for measuring nanostructures and surface roughness Profiler for measuring micro structures. Profiler for measuring micro structures.
Max. scan range xy Line scan x: 50µm to 200mm Line scan x: 50µm to 55mm in one scan. Maximum scan lenght with stiching 200mm. Depending on the objective:
  • One view: 127µmX95µm to 1270µmX955µm
  • Stitching: In principel a whole 6" wafer (time consuming)
Only 10x objective: 2.0 mm x 1.7 mm 90 µm square Line scan x: 50-55000 µm Line scan x: 50-50000 µm
Max. scan range z 50 Å to 1 mm 50 Å to 1 mm Depending on the objective and Z resolution:
  • 94.4 µm ->9984 µm
10 mm (piezo range 500 µm) 1 µm (can go up to 5 µm under special settings) 50 Å to 1 mm 100 Å to 130 nm
Resolution xy down to 0.067 µm down to 0.003 µm Depending on the objective:
  • 0.5µm -> 5µm
Resolving power og the lense: 0.92 µm Depending on scan size and number of samples per line and number of lines - accuracy better than 2% down to 0.003 µm down to 0.5 µm
Resolution z 1 Å, 10 Å, 40 Å or 160 Å depending on range 1 Å, 10 Å, 40 Å or 160 Å depending on range Depending on measuring methode:
  • PSI down to 0.01 nm
  • VSI down to 1 nm
  • Confocal (depending on objective): 1nm -> 50nm
  • Accuracy 0.7%
  • Precision 0.1%
<1Å - accuracy better than 2% 1 Å, 10 Å or 20 Å depending on range 1 Å, 10 Å, 40 Å or 160 Å depending on range
Max. scan depth [µm] as a function of trench width W) 1.2*(W[µm]-5µm) 1.2*(W[µm]-5µm) Depending on material and trench width:
  • Somewhere between 1:1 and 1:12
Depending on material and trench width. ~1:1 with standard cantilever. 1.2*(W[µm]-5µm) 1.2*(W[µm]-2.5µm)
Standard tip radius 5 µm 45o cone 5 µm 45o cone No tip - using light
  • Blue monochromatic LED: 460nm
  • White broadband LED: 550nm
No tip - using light
  • Blue monochromatic LED: 460nm
  • White broadband LED: 550nm
<12 nm on standard cantilever 5 µm 45o cone 2.5 µm 45o cone
Stress measurement Can be done Can be done No stress calculation capability Cannot be done Cannot be done Cannot be done Cannot be done
Surface roughness Can be done on a line scan Can be done on a line scan Can be done on a line or an area Can be done on a line or an area Can be done on a selected surface area Can be done on a line scan Recommended to use Dektak XTA or Dektak 8.
Substrate size up to 8" up to 6" Up to more than 6" 100x100 mm 6" or less up to 6" 4" or less
Allowed materials
  • Almost any material that does not leave residual on the stage, please check the responsible group for any non standard materials
  • Almost any material that does not leave residual on the stage, please check the responsible group for any non standard materials
  • Almost any material that does not leave residual on the stage, please check the responsible group for any non standard materials
  • Almost any material that does not leave residual on the stage, please check the responsible group for any non standard materials
  • Almost any material that does not leave residual on the stage, please check the responsible group for any non standard materials
  • Almost any material that does not leave residual on the stage.
  • Almost any material that does not leave residual on the stage.
Location Cleanroom F-2 Cleanroom F-2 Cleanroom F-2 Basement, building 346, room 904 AFM Icon1: Cleanroom C-1

AFM Icon2: Basement, building 346, room 904

Basement, building 346, room 904 Pack-lab, building 347, room 179