Specific Process Knowledge/Thin film deposition/Furnace LPCVD PolySilicon: Difference between revisions

From LabAdviser
Paphol (talk | contribs)
Paphol (talk | contribs)
Line 25: Line 25:


*[[Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_polysilicon/Deposition_of_polysilicon_using_LPCVD/Standard_recipes,_QC_limits_and_results_for_the_4%22_polysilicon_furnace|Deposition of polysilicon using the 4" polysilicon furnace]]
*[[Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_polysilicon/Deposition_of_polysilicon_using_LPCVD/Standard_recipes,_QC_limits_and_results_for_the_4%22_polysilicon_furnace|Deposition of polysilicon using the 4" polysilicon furnace]]
*[[Editing Specific Process Knowledge/Thin film deposition/Deposition of polysilicon/Deposition of polysilicon using LPCVD/Boron doped poly-Si and a-Si |Boron doped Poly-Si and Boron doped a-Si using the 4" polysilicon furnace]]
*[[/Boron doped poly-Si and a-Si |Boron doped poly-Si and a-Si by using 4" polysilicon furnace]]
*[[Specific Process Knowledge/Thin film deposition/Deposition of polysilicon/Deposition of polysilicon using LPCVD/Boron doped poly-Si and a-Si |Boron doped Poly-Si and Boron doped a-Si using the 4" polysilicon furnace]]
 


*[[Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_polysilicon/Deposition_of_polysilicon_using_LPCVD/Standard_recipes,_QC_limits_and_results_for_the_6%22_polysilicon_furnace|Deposition of polysilicon using the 6" polysilicon furnace]]
*[[Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_polysilicon/Deposition_of_polysilicon_using_LPCVD/Standard_recipes,_QC_limits_and_results_for_the_6%22_polysilicon_furnace|Deposition of polysilicon using the 6" polysilicon furnace]]
Line 33: Line 33:
*[[Specific Process Knowledge/Thin film deposition/Deposition of polysilicon/Deposition of polysilicon using LPCVD|Deposition of polysilicon using LPCVD]]
*[[Specific Process Knowledge/Thin film deposition/Deposition of polysilicon/Deposition of polysilicon using LPCVD|Deposition of polysilicon using LPCVD]]
hide text -->
hide text -->
*[[/Boron doped poly-Si and a-Si |Boron doped poly-Si and a-Si ]]


==Overview of the performance of the LPCVD polysilicon processes and some process related parameters==
==Overview of the performance of the LPCVD polysilicon processes and some process related parameters==

Revision as of 13:06, 2 November 2015

Feedback to this page: click here


Deposition of polysilicon using LPCVD

4" polysilicon furnace (B4) located in cleanroom B-1
6" polysilicon furnace located (E2) in cleanroom E-6

Danchip has two furnaces for deposition of LPCVD (Low Chemical Vapour Deposition) polysilicon: A 6" furnace (installed in 2011) for deposition of standard polySi, amorphous polySi and boron doped polySi on 100 mm or 150 mm wafers and a 4" furnace (installed in 1995) for deposition of standard polySi, amorphous polySi, boron- and phosphorous doped polySi on 100 mm wafers. In LabManager the two furnaces are named "Furnace: LPCVD Poly-Si (4") (B4)" and "Furnace: LPCVD Poly-Si (6") (E2)", respectively. Both furnaces are Tempress horizontal furnaces.

The LPCVD polysilicon deposition is a batch process, where polySi is deposited on a batch of 25 or 50 wafers (6" polySi furnace) or 30 wafers (4" polySi furnace). The polySi has a good step coverage, and especially for standard polySi the film thickness is very uniform over the wafers.

The reactive gas is silane (SiH4). The dopant for boron doped polySi is BCl3 (6" polySi furnace) or B2H6 (4" polySi furnace), and for phosphorous doped polySi the dopant is PH3. For standard and doped polysilion the deposition takes place at a temperature of 600 oC - 620 oC and a pressure of 200-250 mTorr. For amorphous polysilicon the deposition temperatures and thus the deposition rate are lower. For phosphorus doped polySi the deposition rate is approximately ten times lower than for boron doped polySi. Please check the cross contamination information in LabManager before you use any of the two furnaces.

The user manuals, quality control procedures and results, technical information and contact information can be found in LabManager:

4" LPCVD polysilicon furnace (B4)

6" LPCVD polysilicon furnace (E2)

Process information



Overview of the performance of the LPCVD polysilicon processes and some process related parameters

Equipment 4" LPCVD polysilicon furnace (B4) 6" LPCVD polysilicon furnace (E2)
Purpose Deposition of
  • Standard polySi
  • Amorphous polySi
  • Boron doped polySi (B2H6 dopant)
  • Phosphorus doped polySi (PH3 dopant)
  • Standard polySi
  • Amorphous polySi
  • Boron doped polySi (BCl3 dopant)
Performance Step coverage
  • Very Good
  • Very good
Film quality
  • Deposition on both sides of the substrate
  • Good uniformity over the wafer
  • Deposition on both sides of the substrate
  • Good uniformity over the wafer
Process parameter range Process Temperature
  • Standard polySi: 620 oC
  • Amorphous polySi: 560-580 oC
  • Boron doped a-Si: 580 oC
  • Phosphorus doped a-Si: 580 oC
  • Boron doped polySi: 620 oC
  • Phosphorus doped polySi: 620 oC
  • Standard polySi: 620 oC
  • Amorphous polySi: 560-580 oC
  • Boron doped polySi: 600-620 oC

The process temperature vary over the furnace tube

Process pressure
  • 200-250 mTorr
  • 150-220 mTorr

The process pressure depends on the process

Gas flows
  • SiH4: 80 sccm
  • B2H6: 7 sccm
  • PH3: 7 sccm
  • SiH4: 50-70 sccm
  • BCl3: 1 sccm

The silane (SiH4) flow depends on the process

Substrates Batch size
  • 1-30 100 mm wafers

Including a testwafer with ~110 nm oxide

  • 1-25 or 1-50 100 mm wafers
  • 1-25 or 1-50 150 mm wafers

Including a testwafer with ~110 nm oxide

Substrate materials allowed
  • Silicon wafers (new or RCA cleaned)
    • with layers of silicon oxide or silicon (oxy)nitride
    • from the A, B and E stack furnaces
  • Quartz/fused silica wafers (RCA cleaned)
  • Silicon wafers (new or RCA cleaned)
    • with layers of silicon oxide or silicon (oxy)nitride
    • from the A, B and E stack furnaces
  • Quartz/fused silica wafers (RCA cleaned)