Specific Process Knowledge/Lithography/Coaters/Spin Coater: Gamma UV processing: Difference between revisions
Appearance
| Line 227: | Line 227: | ||
==AZ nLOF 2020 coating== | ==AZ nLOF 2020 coating== | ||
Spin coating of standard thicknesses (1.5 - 3 µm) of AZ nLOF 2020 on Spin Coater: Gamma UV is divided into two or three steps: HMDS priming (optional), spin coating, and soft baking. The HMDS priming is equal to the ''HMDS fast'' process. Spin coating uses dynamic dispense of resist at 800 rpm, using a volume of 3 ml for 100 mm substrates, and | Spin coating of standard thicknesses (1.5 - 3 µm) of AZ nLOF 2020 on Spin Coater: Gamma UV is divided into two or three steps: HMDS priming (optional), spin coating, and soft baking. The HMDS priming is equal to the ''HMDS fast'' process. Spin coating uses dynamic dispense of resist at 800 rpm, using a volume of 3 ml for 100 mm substrates, and 5 ml for 150 mm substrates, respectively. The dispense is followed by spin-off at a thickness dependent spin speed for 30 seconds. The wafer is decelerated at 1000 rpm/s before stopping. Soft baking is done at 110°C for 60s. | ||
''Flow names, process parameters, and test results:'' | ''Flow names, process parameters, and test results:'' | ||
| Line 291: | Line 291: | ||
|} | |} | ||
<br>In order to achieve thicker coatings of AZ nLOF 2020 while minimizing edge bead problems, a method of waiting before spin-off is used on Spin Coater: Gamma UV. The spin coating process consists of three steps: dispense, waiting, and spin-off. The first step is dynamic dispense of resist at 800 rpm, using a volume of 3 ml for 100 mm substrates. In the waiting step the resist is "dried" at low spin speed without exhaust (in practice the exhaust is opened briefly every 15s in order to avoid triggering the exhaust alarm). The final spin-off step is short, but at relatively high spin speed, with backside rinse the first half of the time. Soft baking is done at 110°C for 120s. Contact baking is used since the backside has been cleaned. The coating may be affected by the backside rinse at the very edge of the wafer, something which should be considered if the resist is used as an etch mask. | <br>In order to achieve thicker coatings of AZ nLOF 2020 while minimizing edge bead problems, a method of waiting before spin-off is used on Spin Coater: Gamma UV. The spin coating process consists of three steps: dispense, waiting, and spin-off. The first step is dynamic dispense of resist at 800 rpm, using a volume of 3 ml for 100 mm substrates, and 5 ml for 150 mm substrates, respectively. In the waiting step the resist is "dried" at low spin speed without exhaust (in practice the exhaust is opened briefly every 15s in order to avoid triggering the exhaust alarm). The final spin-off step is short, but at relatively high spin speed, with backside rinse the first half of the time. Soft baking is done at 110°C for 120s. Contact baking is used since the backside has been cleaned. The coating may be affected by the backside rinse at the very edge of the wafer, something which should be considered if the resist is used as an etch mask. | ||
''Flow names, process parameters, and test results:'' | ''Flow names, process parameters, and test results:'' | ||