Specific Process Knowledge/Characterization/SIMS: Secondary Ion Mass Spectrometry: Difference between revisions

From LabAdviser
New page: ==Atomika SIMS==
 
Jmli (talk | contribs)
No edit summary
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
==Atomika SIMS==
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/SIMS:_Secondary_Ion_Mass_Spectrometry click here]'''
 
==Atomika SIMS '''NO LONGER AVAILABLE''' ==
{{Template:Author-jmli1}}
 
'''We have decommissioned the SIMS we had at DTU Nanolab. We can guide you to another site for SIMS analysis, take a look here: [http://www.eag.com/secondary-ion-mass-spectrometry-sims/].'''
 
The SIMS analyses the composition of a sample by secondary ion mass spectroscopy. By using either oxygen or cesium ions accelerated by a high tension the surface of the sample is sputtered off as ions. These ions are analysed in a mass spectrometer and one can determine the elemental composition as a function of depth. If compared to signals from reference materials one can quantify the atomic composition - in certain cases down to extremely low concentrations (ppm). Doping levels and impurities may be determined..

Latest revision as of 08:54, 3 February 2023

Feedback to this page: click here

Atomika SIMS NO LONGER AVAILABLE

Unless otherwise stated, all content on this page was created by Jonas Michael-Lindhard, DTU Nanolab

We have decommissioned the SIMS we had at DTU Nanolab. We can guide you to another site for SIMS analysis, take a look here: [1].

The SIMS analyses the composition of a sample by secondary ion mass spectroscopy. By using either oxygen or cesium ions accelerated by a high tension the surface of the sample is sputtered off as ions. These ions are analysed in a mass spectrometer and one can determine the elemental composition as a function of depth. If compared to signals from reference materials one can quantify the atomic composition - in certain cases down to extremely low concentrations (ppm). Doping levels and impurities may be determined..