Jump to content

LabAdviser/Technology Research/Fabrication of Hyperbolic Metamaterials using Atomic Layer Deposition: Difference between revisions

Eves (talk | contribs)
Mmat (talk | contribs)
mNo edit summary
 
(46 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:labadviser@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/LabAdviser/Technology_Research/Fabrication_of_Hyperbolic_Metamaterials_using_Atomic_Layer_Deposition click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/LabAdviser/Technology_Research/Fabrication_of_Hyperbolic_Metamaterials_using_Atomic_Layer_Deposition click here]'''
 
<i>This page is written by <b>Evgeniy Shkondin @DTU Nanolab</b> if nothing else is stated. <br>
All images and photos on this page belongs to <b>DTU Nanolab</b> and <b>DTU Electro</b> (previous DTU Fotonik).<br>
The fabrication and characterization described below were conducted in <b>2013-2016 by Evgeniy Shkondin, DTU Nanolab</b>.<br></i>
 


=Fabrication of Hyperbolic Metamaterials using Atomic Layer Deposition=
=Fabrication of Hyperbolic Metamaterials using Atomic Layer Deposition=


*'''Project type:''' Ph.d project
*'''Project type:''' Ph.d project
*'''Project responsible:''' Evgeniy Shkodin
*'''Project responsible: Evgeniy Shkondin <br>  [[image:orcid_16x16.png|16x16px]]https://orcid.org/0000-0002-8347-1814'''
*'''Supervisors:''' Andrei Lavrinenko, Flemming Jensen
*'''Supervisors:''' Andrei Lavrinenko, Flemming Jensen
*'''Partners involved:''' DTU Fotonik, DTU Danchip
*'''Partners involved:''' DTU Fotonik, DTU Nanolab (former DTU Danchip)
*'''Full Thesis:''' https://orbit.dtu.dk/en/publications/fabrication-of-hyperbolic-metamaterials-using-atomic-layer-deposi


==Project Description==
==Project Description==
Line 26: Line 32:
Transparent conductive oxides such as Al-doped ZnO (AZO) have attracted significant attention as alternative plasmonic materials, due to their low loss and metallic behavior in the near/mid-infrared range. One more advantage of AZO is the possibility of tuning the permittivity by design, by deciding the dopants or the ratio of different components, thus constituting an advantage over metals having fixed permittivity values. AZO was chosen since the Cu ALD showed up to be far less successful in terms of reproducibility and conformality requirements. AZO has been grown on different substrates in the temperature range 150 <sup>o</sup>C - 250 <sup>o</sup>C and optical, electrical and physical properties have been clarified.<br>
Transparent conductive oxides such as Al-doped ZnO (AZO) have attracted significant attention as alternative plasmonic materials, due to their low loss and metallic behavior in the near/mid-infrared range. One more advantage of AZO is the possibility of tuning the permittivity by design, by deciding the dopants or the ratio of different components, thus constituting an advantage over metals having fixed permittivity values. AZO was chosen since the Cu ALD showed up to be far less successful in terms of reproducibility and conformality requirements. AZO has been grown on different substrates in the temperature range 150 <sup>o</sup>C - 250 <sup>o</sup>C and optical, electrical and physical properties have been clarified.<br>


Finally, HMMs with two different geometries have been realized, AZO trenches and AZO pillars standing in a dielectric host (air or Si). Furthermore, it has been proposed that high aspect ratio grating structures with AZO lamellas in a silicon matrix function as a versatile platform supporting both surface and volume infrared waves. By selective etching of Si the performance of the whole structure
Finally, metamaterials with two different geometries have been realized, AZO trenches and AZO pillars standing in a dielectric host (air or Si). Furthermore, it has been proposed that high aspect ratio grating structures with AZO lamellas in a silicon matrix function as a versatile platform supporting both surface and volume infrared waves. By selective etching of Si the performance of the whole structure
can be reconfigured. In other words, a bi-slab HMM has been suggested, where the effective properties of the structure are controlled by the thickness of the top slab (etching depth).<br clear="all" />
can be reconfigured. In other words, a bi-slab HMM has been suggested, where the effective properties of the structure are controlled by the thickness of the top slab (etching depth).<br clear="all" />


Line 47: Line 53:
<br clear="all" />
<br clear="all" />


==Publications ij peer-review journals==
==Publications in peer-review journals==
 
 
===Midinfrared Surface Waves on a High Aspect Ratio Nanotrench Platform ===
O. Takayama, <u>E. Shkondin</u>, A. Bogdanov, M. E. Aryaee Panah, K. Golenicki, P. Dmitriev, T. Repän, R. Malureanu, P. Belov, F. Jensen & A. Lavrinenko. ACS Photonics, 2017, 4 (11), pp 2899–2907 [http://pubs.acs.org/doi/abs/10.1021/acsphotonics.7b00924 LINK]
 
*[[/AZO_gratings|<strong>Procces flow</strong>]]


===Large-Scale High Aspect Ratio Al-Doped ZnO Nanopillars Arrays as Anisotropic Metamaterials===
===Large-Scale High Aspect Ratio Al-Doped ZnO Nanopillars Arrays as Anisotropic Metamaterials===
Shkondin, E., Takayama, O., Aryaee Panah, E. M., Liu, P., Larsen, P., Mar, M., Jensen, F. & Lavrinenko, A.
<u>E. Shkondin</u>, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen. & A. Lavrinenko
(2017). Submitted
(2017). Optical Materials Express, 7(5), pp. 1606-1627 (2017) [https://www.osapublishing.org/ome/abstract.cfm?uri=ome-7-5-1606 LINK]


* Link to process flow
*[[/AZO_pillars|<strong>Procces flow</strong>]]


===A Reconfigurable Platform for Mid-Infrared Surface Photonics Based on a High Aspect Ratio Aluminum-Doped Zinc Oxide Multi-Trench Structure===
===Laguerre-Gauss Beam Generation in IR and UV by Subwavelength Surface-Relief Gratings===
Takayama, O., Shkondin., E., Bogdanov., A., Aryaee Panah, M. E., Golenicki, K., Dmitriev, P., Repan, T., Malureanu, R., Belov, P., Jensen, F., Lavrinenko, A.
L. Vertchenko, <u>E. Shkondin</u>, R. Malureanu, & C. Monken
(2017). Submitted
(2017). Optics Express, 25(6), pp. 5917-5926 (2017) [https://osapublishing.org/oe/abstract.cfm?uri=oe-25-6-5917 LINK]


* Link to process flow
*[[/TiO2_Q_plates|<strong>Procces flow</strong>]]


===Laguerre-Gauss Beam Generation in IR and UV by Subwavelength Surface-Relief Gratings===
===Fabrication of High Aspect Ratio TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> Nanogratings by Atomic Layer Deposition===
Vertchenko, L., Shkondin, E., Malureanu, R.& Monken, C.
<u>E. Shkondin</u>, O. Takayama, J. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen & A. Lavrinenko
(2017). Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings. Optics Express, 25(6), pp. 5917-5926 (2017)  [https://osapublishing.org/oe/abstract.cfm?uri=oe-25-6-5917 LINK]
(2016). Journal of Vacuum Science and Technology A, 34, 031605 (2016)  [http://scitation.aip.org/content/avs/journal/jvsta/34/3/10.1116/1.4947586 LINK]


*[[/TiO2_Q_plates|Procces flow]]
*[[/TIO_ALU_Gratings_Procces_flow|<strong>Procces flow</strong>]]


===Experimental Demonstration of Effective Medium Approximation Breakdown in Deeply Subwavelength All-Dielectric Multilayers===
===Experimental Demonstration of Effective Medium Approximation Breakdown in Deeply Subwavelength All-Dielectric Multilayers===
Zhukovsky, S., Andryieuski, A., Takayama, O., Shkondin, E., Malureanu, R., Jensen, F., & Lavrinenko, A.
S. Zhukovsky, A. Andryieuski, O. Takayama, <u>E. Shkondin</u>, R. Malureanu, F. Jensen, & A. Lavrinenko
(2015). Experimental Demonstration of Effective Medium Approximation Breakdown in Deeply Subwavelength
(2015). Physical Review Letters, 115(17), 177402  [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.177402 LINK]
All-Dielectric Multilayers. Physical Review Letters, 115(17), 177402  [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.177402 LINK]
 
*[[/EMT_Procces_flow|<strong>Procces flow</strong>]]
 
 
 
<br>
 
==Publications in proceedings==
 
===Effective medium approximation for deeply subwavelength all-dielectric multilayers: when does it break down?===
A. Lavrinenko, S. Zhukovsky, A. Andryieuski, O. Takayama, <u>E. Shkondin</u>, R. Malureanu and F. Jensen <br>
Proceedings of SPIE. Vol. 9883 SPIE - International Society for Optical Engineering, (2016)
 
===Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements===
F. Jensen, <u>E. Shkondin</u>, O. Takayama, P. V. Larsen, M. D. Mar, R. Malureanu, A. V. Lavrinenko <br>
Proceedings of SPIE. Vol. 9921 SPIE - International Society for Optical Engineering, (2016)
 
===Hyperbolic metamaterials with complex geometry===
A. V. Lavrinenko, A. Andryieuski, S. Zhukovsky, O. Takayama, <u>E. Skhondin</u>, M. E. Aryaee Panah, R. Malureanu, F. Jensen <br>
META'16, The 6th International Conference on Metamaterials, Photonic Crystals and Plasmonics, Malaga, Spain, 2A23, Proceedings, p.471-472 (2016)
 
===Surface waves on metal-dielectric metamaterials===
O. Takayama, <u>E. Shkondin</u>, M. E. Aryaee Panah, T. Repän, R. Malureanu, F. Jensen, A. V. Lavrinenko <br>
Proceedings of 18th International Conference on Transparent Optical Networks. IEEE, (2016)
 
===Surface waves on metamaterials interfaces===
O. Takayama, <u>E. Shkondin</u>, M. E. Aryaee Panah, T. Repän, R. Malureanu, F. Jensen, A. V. Lavrinenko <br>
Proceedings of 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics.(2016)
 
===Ultra-thin metal and dielectric layers for nanophotonic applications===
<u>E. Shkondin</u>, L. Leandro, R. Malureanu, F. Jensen, N. Rozlosnik, A. V. Lavrinenko <br>
Proceedings of ICTON, IEEE, 7193380. (2015)
 
==Conferences and workshops==
 
===Conductive oxides trench structures as hyperbolic metamaterials in mid-infrared range===
O. Takayama, <u>E. Shkondin</u>, M. E. A. Panah, T. Reän, R. Malureanu, F. Jensen, A. V. Lavrinenko  <br>
2016. Abstract from 14th International Conference of Near-Field Optics, Nanophotonics and Related Techniques, Hamamatsu, Japan
 
===Fabrication of hollow coaxial ZnAl<sub>2</sub>O<sub>4</sub> high aspect ratio freestanding nanopillars based on the Kirkendall effect===
<u>E. Shkondin</u>, F. Jensen, A. V. Lavrinenko <br>
2016. Abstract from 42nd Micro and Nano Engineering 2016, Vienna, Austria
 
===Fabrication of Al-doped ZnO high aspect ratio nanowires and trenches as active components in mid-infrared plasmonics===
<u>E. Shkondin</u>, O. Takayama, P. V. Larsen, M. D. Mar, F. Jensen, A. V. Lavrinenko <br>
2016. Abstract from 16th Atomic Layer Deposition Conference, Dublin, Ireland.
 
===TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> ALD grown multilayers for subwavelength photonics===
<u>E. Shkondin</u>, F. Jensen, A. V. Lavrinenko, M. D. Mar, P. V. Larsen, R. Malureanu, S. Zhukovsky, A. Andryieuski, O. Takayama <br>
2015. DTU's Sustain Conference 2015, Technical University of Denmark, Kgs. Lyngby, Denmark (2015)
 
===Deep subwavelength photonic multilayers fabricated by atomic layer deposition===
<u>E. Shkondin</u>, S. Zhukovsky, A. Andryieuski, O. Takayama, R. Malureanu, M. D. Mar, A. V. Lavrinenko, F. Jensen <br>
2015. Paper presented at 41st International conference on Micro and Nano Engineering, The Hague, Netherlands.
 
===Fabrication of TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> High Aspect Ratio Nanostructured Gratings at Sub-Micrometer Scale===
<u>E. Shkondin</u>, J. M. Lindhard, M. D. Mar, F. Jensen, A. V. Lavrinenko <br>
2015. Paper presented at 15th International Conference on Atomic Layer Deposition, Portland, Oregon, United States
 
===Depositing Materials on the Micro- and Nanoscale===
M. D. Mar, B. Herstrøm, <u>E. Shkondin</u>, P. Pholprasit, F. Jensen <br>
2014. DTU's Sustain Conference 2014, Technical University of Denmark, Kgs. Lyngby, Denmark (2014)
 
 
 
 


*[[/EMT_Procces_flow|Procces flow]]


===Fabrication of High Aspect Ratio TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> Nanogratings by Atomic Layer Deposition===
Shkondin, E., Takayama, O., Lindhard, J., Larsen, P., Mar, M., Jensen, F. & Lavrinenko, A.
(2016). Fabrication of high aspect ratio TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanogratings by atomic layer deposition. Journal of Vacuum Science and Technology A, 34, 031605 (2016)  [http://scitation.aip.org/content/avs/journal/jvsta/34/3/10.1116/1.4947586 LINK]


*[[/TIO_ALU_Gratings_Procces_flow|Procces flow]]
<!-- This is a comment -->
<!-- This is a comment -->