Jump to content

Specific Process Knowledge/Characterization/SEM LEO: Difference between revisions

From LabAdviser
Pevo (talk | contribs)
Mmat (talk | contribs)
 
(30 intermediate revisions by 4 users not shown)
Line 1: Line 1:
=<span style="background:#FF2800">THIS PAGE IS UNDER CONSTRUCTION</span>[[image:Under_construction.png|200px]]=
{{cc-nanolab}}


'''Feedback to this page''': '''[mailto:labadviser@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/SEM_LEO0 click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/SEM_LEO0 click here]'''
<br>
<br>
'''<p style="color:red;">The SEM LEO  has been decomissioned and relocated to DTU Mechanics in 2020.</p>'''


=SEM LEO=
=SEM LEO=
[[image:IMG_3290.jpg|400x400px|right|thumb|The SEM LEO located in cleanroom F-2]]


[[image:IMG_3290.jpg|400x400px|right|thumb|Picosun R200 ALD, positioned in cleanroom F-2.]]
The SEM LEO was a very reliable and rugged instrument that provided high quality SEM  images of most samples and it served the users of the cleanroom for many years. Excellent images on a large variety of materials such as semiconductors, semiconductor oxides or nitrides, metals, thin films and some polymers were acquired by the thousands on the SEM.  


A Danchip there are five scanning electron microscopes (SEMs). These SEMs cover a wide range of needs both in the cleanroom and outside: From the fast in-process verification of different process parameters such as etch rates, step coverages or lift-off quality to the ultra high resolution images on any type of sample intended for publication.
In her later years the SEM LEO was equipped with a Raith e-beam lithography system and was exclusively dedicated to the users of the Raith E-beam lithography.


The SEM LEO was installed in the cleanroom in the 1998, and the software was ungraded in 2012.  
===Typical current values for EBL===
Reported values are the average of five measurements from Elphy Quantum using the EBL holder's Faraday cup. All values in pA.


This SEM will cover most users need. It is a very reliable and rugged instrument that provides high quality images of most samples. Excellent images on a large variety of materials such as semiconductors, semiconductor oxides or nitrides, metals, thin films and some polymers may be acquired on the SEM.
{| border="1" style="text-align: center; width: 320px; height: 200px;"
|-


The SEM is is equipped with a Raith e-beam writing system. This system requires a special training.
|colspan="6" style="text-align: center;" style="background: #efefef;" | '''LEO - Current measurements 11/02/2017'''


|-
!scope="row" |&nbsp;
!|5kV
!|10kV
!|15kV
!|20kV


'''The user manual, control instruction, the user APV and contact information can be found in LabManager:'''
|-


[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=37 SEM LEO info page in LabManager],


|-
!10um
|13
|17
|20.5
|25
|-
|-
!20um
|62
|87
|105
|127
|-
|-
!30um
|160
|175
|215
|264
|-
!60um
|510
|680
|850
|1040
|}


== Performance information ==
==Equipment performance==
 
*[[/SEM comparison tablel|SEM comparison table]]
 
 
==Equipment performance and process related parameters==


{| border="2" cellspacing="0" cellpadding="2"  
{| border="2" cellspacing="0" cellpadding="2"  


!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
|style="background:WhiteSmoke; color:black"|<b>ALD Picosun R200</b>
|style="background:WhiteSmoke; color:black"|<b>SEM LEO (Leo 1550 SEM)</b>
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Purpose
|style="background:LightGrey; color:black"|Imaging and measurement of
|style="background:WhiteSmoke; color:black"|
* Conducting samples
* Semi-conducting samples
* Thin (~ 5 µm <) layers of non-conducting materials such as polymers
|-
|style="background:LightGrey; color:black"|Other purpose
|style="background:WhiteSmoke; color:black"|
*E-beam lithography using Raith Elphy Quantum system
|-
!style="background:silver; color:black;" align="center" width="60"|Location
|style="background:LightGrey; color:black"|
|style="background:WhiteSmoke; color:black"|
*Cleanroom of DTU Nanolab
|-
!style="background:silver; color:black;" align="center" width="60"|Performance
|style="background:LightGrey; color:black"|Resolution
|style="background:WhiteSmoke; color:black"|
*~ 5 nm (limited by vibrations)
The resolution is strongly dependent on the type of sample and the skills of the operator.
|-
|-
!style="background:silver; color:black;" align="center" width="60"|Purpose
!style="background:silver; color:black" align="center" valign="center" rowspan="5"|Instrument specifics
|style="background:LightGrey; color:black"|ALD (atomic layer deposition) of
|style="background:LightGrey; color:black"|Detectors
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Al<sub>2</sub>O<sub>3</sub>
*Secondary electron (Se2)
*TiO<sub>2</sub>
*Inlens secondary electron (Inlens)
*Pt (not tested yet)
*Backscatter electron (BSD)
Please note that it might not be possible to deposit all marials at the same time
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Performance
|style="background:LightGrey; color:black"|Stage
|style="background:LightGrey; color:black"|Deposition rates
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Al<sub>2</sub>O<sub>3</sub>: ~ 0.88 - 0.97 nm/cycle (Using the "Al2O3" recipe, depending of the temperature)
*X, Y: 125 &times; 100 mm
*TiO<sub>2</sub>: Not measured
*T: 0 to 90<sup>o</sup>
*Pt: Not measured
*R: 360<sup>o</sup>
*Z: 48 mm
|-
|-
|style="background:LightGrey; color:black"|Thickness
|style="background:LightGrey; color:black"|Electron source
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Al<sub>2</sub>O<sub>3</sub>: 0 - 100 nm
*FEG (Field Emission Gun) source
*TiO<sub>2</sub>: 0 - 100 nm
*Pt: ?
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Process parameter range
|style="background:LightGrey; color:black"|Operating pressures
|style="background:LightGrey; color:black"|Temperature
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Al<sub>2</sub>O<sub>3</sub>: 150 - 350 <sup>o</sup>C
*Fixed at High vacuum (2 &times; 10<sup>-5</sup>mbar - 10<sup>-6</sup>mbar)
*TiO<sub>2</sub>: ?
*Pt: ?
|-
|-
|style="background:LightGrey; color:black"|Precursors
|style="background:LightGrey; color:black"|Options
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*TMA
*Raith Elphy Quantum E-Beam Litography system
*TiCl<sub>4</sub>
*H<sub>2</sub>O
*O<sub>3</sub>
*O<sub>2</sub>
*MeCpPtMe<sub>3</sub> (not mounted yet)
Please note that not all precursors might be mounted on the tool at the same time
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="3"|Substrates
!style="background:silver; color:black" align="center" valign="center" rowspan="3"|Substrates
|style="background:LightGrey; color:black"|Batch size
|style="background:LightGrey; color:black"|Batch size
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*1-5 100 mm wafers
*Wafers up to 6" (only full view up to 4")
*1-5 150 mm wafers
*Several smaller samples
|-
|-
| style="background:LightGrey; color:black"|Allowed materials
| style="background:LightGrey; color:black"|Allowed materials
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Silicon
*Any standard cleanroom materials.
*Silicon oxide, silicon nitride
*Quartz/fused silica
*Al, Al<sub>2</sub>O<sub>3</sub>
*Ti, TiO<sub>2</sub>
*Other metals (use dedicated carrier wafer)
*III-V materials (use dedicated carrier wafer)
*Polymers (depending on the melting point/deposition temperature, use carrier wafer)
|-  
|-  
|}
|}

Latest revision as of 13:03, 17 September 2025

The content on this page, including all images and pictures, was created by DTU Nanolab staff, unless otherwise stated.

Feedback to this page: click here

The SEM LEO has been decomissioned and relocated to DTU Mechanics in 2020.

SEM LEO

The SEM LEO located in cleanroom F-2

The SEM LEO was a very reliable and rugged instrument that provided high quality SEM images of most samples and it served the users of the cleanroom for many years. Excellent images on a large variety of materials such as semiconductors, semiconductor oxides or nitrides, metals, thin films and some polymers were acquired by the thousands on the SEM.

In her later years the SEM LEO was equipped with a Raith e-beam lithography system and was exclusively dedicated to the users of the Raith E-beam lithography.

Typical current values for EBL

Reported values are the average of five measurements from Elphy Quantum using the EBL holder's Faraday cup. All values in pA.

LEO - Current measurements 11/02/2017
  5kV 10kV 15kV 20kV
10um 13 17 20.5 25
20um 62 87 105 127
30um 160 175 215 264
60um 510 680 850 1040

Equipment performance

Equipment SEM LEO (Leo 1550 SEM)
Purpose Imaging and measurement of
  • Conducting samples
  • Semi-conducting samples
  • Thin (~ 5 µm <) layers of non-conducting materials such as polymers
Other purpose
  • E-beam lithography using Raith Elphy Quantum system
Location
  • Cleanroom of DTU Nanolab
Performance Resolution
  • ~ 5 nm (limited by vibrations)

The resolution is strongly dependent on the type of sample and the skills of the operator.

Instrument specifics Detectors
  • Secondary electron (Se2)
  • Inlens secondary electron (Inlens)
  • Backscatter electron (BSD)
Stage
  • X, Y: 125 × 100 mm
  • T: 0 to 90o
  • R: 360o
  • Z: 48 mm
Electron source
  • FEG (Field Emission Gun) source
Operating pressures
  • Fixed at High vacuum (2 × 10-5mbar - 10-6mbar)
Options
  • Raith Elphy Quantum E-Beam Litography system
Substrates Batch size
  • Wafers up to 6" (only full view up to 4")
Allowed materials
  • Any standard cleanroom materials.