Specific Process Knowledge/Etch/KOH Etch: Difference between revisions

From LabAdviser
Fj (talk | contribs)
Hvje (talk | contribs)
 
(248 intermediate revisions by 15 users not shown)
Line 1: Line 1:
==KOH etch - ''Anisotropic silicon etch''==
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Etch/KOH_Etch click here]'''
[[Image:KOH_4tommer.jpg|300x399px|thumb|KOH etch for 4" wafers: positioned in cleanroom 3]]
 
'''Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.'''
 
'''All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.'''
 
 
[[Category: Equipment|Etch Wet KOH etch]]
[[Category: Etch (Wet) bath|KOH etch]]
 
==Si etch - ''Anisotropic silicon etch''==
 
KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.
KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.


KOH-etching is a highly versatile and cheap way to realize micromechanical structures if you can live with the necessary Si<math>_3</math>N<math>_4</math>- or SiO<math>_2</math> masking materials and the K contamination of the surface. The latter necessitates in most cases a wet post-clean ('7-up' or RCA-clean) if the wafer is to be processed further.
KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si<sub>3</sub>N<sub>4</sub>- or SiO<sub>2</sub>-masking materials and the potassium contamination of the surface. '''The latter necessitates in most cases a wet post-clean ([[Specific Process Knowledge/Wafer cleaning/7-up & Piranha|'7-up']] or [[Specific Process Knowledge/Wafer cleaning/RCA|RCA-clean]]) if the wafer is to be processed further.'''
 
At DTU Nanolab we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO<sub>2</sub>-mask - is depending on the temperature. We normally use T=80 <sup>o</sup>C but may choose to reduce this to e.g. 60 <sup>o</sup>C or 70 <sup>o</sup>C in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 <sup>o</sup>C (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch. Etching with IPA added to the KOH solution (250ml IPA/1000ml KOH) can be done in KOH fumehood.
<br clear="all" />
 
<gallery caption="Different places to do anisotropic wet silicon etch" widths="350px" heights="250px" perrow="3">
image:KOH_BHF.JPG|Wetbench 01: Si etch, for Si etch of 4" and 6" wafers using KOH. Positioned in cleanroom D-3.
image:KOH_fumehood.JPG|Fume hood 06: Si etch, for Si etch of 4" and 6" wafers using KOH. Positioned in cleanroom D-3. This is used for wafers that are considered dirty.</gallery>
 
'''The user manuals, quality control procedures and results, user APVs, technical information and contact information can be found in LabManager:'''
<!-- remember to remove the type of documents that are not present -->


At Danchip we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO<math>_2</math>-mask - is depending on the temperature. We normally use T=80 <sup>o</sup>C but may choose to reduce this to e.g. 60 <sup>o</sup>C or 70 <sup>o</sup>C in case of a high-precission timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 <sup>o</sup>C (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved roughly a factor of 10 compared to the standard etch. Key facts for the two solutions are resumed in the table:


<br clear="all" />
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=376 Si Etch 1: KOH info page in LabManager],
===Comparing the two solutions===
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=390 Si Etch 2: KOH info page in LabManager],


{| border="1" cellspacing="0" cellpadding="4" align="left"
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=407 Si Etch 3: KOH info page in LabManager]
!
! 28 wt% KOH
! 28 wt% KOH sat. with IPA
|-
|General description
|
Etch of Si(100)
|
Etch of Si(100) with boron etch-stop
|-
|Chemical solution
|KOH:H<math>_2</math>O  500 g : 1000 ml
|KOH:H<math>_2</math>O:IPA  500 g : 1000 ml : ?? ml
|-
|Process temperature
|60 <sup>o</sup>C
70 <sup>o</sup>C


80 <sup>o</sup>C
==Process Information==


|
*[[/ProcessInfo#QC|QC info for standard KOH baths]]
70 <sup>o</sup>C
*[[/ProcessInfo#Mixing KOH|How to mix KOH]]
*[[/ProcessInfo#Backside protection|Backside protection]]
*[[/ProcessInfo#Theory|Crystal orientation dependency]]


==KOH etching baths==
Key facts for the different etch baths available at DTU Nanolab are resumed in the table:
<br clear="all" />




{| border="2" cellspacing="0" cellpadding="2"
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment
|style="background:WhiteSmoke; color:black"|<b>Si Etch 01: KOH</b>
|style="background:WhiteSmoke; color:black"|<b>Si Etch 02: KOH</b>
|style="background:WhiteSmoke; color:black"|<b>Si Etch 03: KOH</b>
|-
!style="background:Silver; color:black;" align="center" width="60" rowspan="2"|Purpose
|style="background:LightGrey; color:black"|
*Etch of Silicon in 28 wt% KOH
|style="background:WhiteSmoke; color:black"|
*Etch of Silicon in 28 wt% KOH
|style="background:WhiteSmoke; color:black"|
*Etch of Silicon in 28 wt% KOH
|style="background:WhiteSmoke; color:black"|
*Etch of Silicon in 28 wt% KOH
The bath is dedicated wafers with metal or otherwise dirty wafers
|-
|style="background:LightGrey; color:black"|Link to safety APV and SDS
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4964&mach=376 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4964&mach=376 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4897&mach=407 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
|-
|-
 
!style="background:silver; color:black" align="center" valign="center" rowspan="7"|Performance
|Possible masking materials:
|style="background:LightGrey; color:black"|Etch rates in crystalline silicon (100)
|Stoichiometric Si<math>_3</math>N<math>_4</math>
|style="background:WhiteSmoke; color:black"|
Si-rich Si<math>_3</math>N<math>_4</math>
*0.4 µm/min (60 °C)
|
*0.7 µm/min (70 °C)
Photoresist (1.5 µm AZ5214E)
*1.3 µm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
*0.4 µm/min (60 °C)
*0.7 µm/min (70 °C)
*1.3 µm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
*0.4 µm/min (60 °C)
*0.7 µm/min (70 °C)
*1.3 µm/min (80 °C)
|-
|style="background:LightGrey; color:black"|Etch rates in crystalline silicon (110)
|style="background:WhiteSmoke; color:black"|
*2.5 µm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
*2.5 µm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
*2.5 µm/min (80 °C)
|-
|style="background:LightGrey; color:black"|Etch rates in Thermal SiO2
|style="background:WhiteSmoke; color:black"|
*Theoretical values:
*1.2 nm/min (60 °C)
*7.5 nm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
*Theoretical values:
*1.2 nm/min (60 °C)
*7.5 nm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
*Theoretical values:
*1.2 nm/min (60 °C)
*7.5 nm/min (80 °C)
|-
|style="background:LightGrey; color:black"|Etch rates in other oxides
|style="background:WhiteSmoke; color:black"|
.
|style="background:WhiteSmoke; color:black"|
yannickseis@nbi.ku nov. 2017 @80 °C:
*BPSG from PECVD4: 311nm in about 3 min
*Waveguide oxide from PECVD4: 320nm etched in 26 min
*TEOS oxide from furnace: 300nm etched in 11 min
jemafh@nilt 2019-Marts:
*Standard from PECVD3: selectivity 1:100 to Si  
|style="background:WhiteSmoke; color:black"|
.
|-
|style="background:LightGrey; color:black"|Etch rates in PECVD SiN
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|See etchrates for PECVD SiN [https://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_Silicon_Nitride/Deposition_of_Silicon_Nitride_using_PECVD/PECVD3:_Low_stress_nitride_testing#DOE_made_to_find_a_good_QC_nitride_recipe_with_low_stress_and_low_KOH_etch_rate_(by_Berit_Herstrøm_@_DTU_Nanolab_2016_Marts) here]
|style="background:WhiteSmoke; color:black"|
|-
|style="background:LightGrey; color:black"|Roughness
|style="background:WhiteSmoke; color:black"|
*Typical: 100-600 Å
|style="background:WhiteSmoke; color:black"|
*Typical: 100-600 Å
|style="background:WhiteSmoke; color:black"|
*May be high due to contamination and poor controlled concentration of the KOH solution
|-
|style="background:LightGrey; color:black"|Anisotropy
|style="background:WhiteSmoke; color:black"|
*The etch rate is very dependent on the crystal orientation of the silicon.
|style="background:WhiteSmoke; color:black"|
*The etch rate is very dependent on the crystal orientation of the silicon.
|style="background:WhiteSmoke; color:black"|
*The etch rate is very dependent on the crystal orientation of the silicon.
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Process parameter range
|style="background:LightGrey; color:black"|Chemical solution
|style="background:WhiteSmoke; color:black"|
*Mixing ratios giving 28 wt% KOH solutions
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
|style="background:WhiteSmoke; color:black"|
*Mixing ratios giving 28 wt% KOH solutions
KOH:H<sub>2</sub>O - 500 g : 1000 ml, when using pills
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
|style="background:WhiteSmoke; color:black"|
*Mixing ratios giving 28 wt% KOH solutions
KOH:H<sub>2</sub>O - 500 g : 1000 ml, when using pills
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
|-
|-
|Etch rate
|style="background:LightGrey; color:black"|Temperature
|
|style="background:WhiteSmoke; color:black"|
~100 nm/min (Pure Al)
*Max 80 °C (standard etch)
|
|style="background:WhiteSmoke; color:black"|
~60(??) nm/min
*Max 80 °C
|style="background:WhiteSmoke; color:black"|
*Max 80 °C
|-
|-
|Batch size
!style="background:silver; color:black" align="center" valign="center" rowspan="4"|Substrates
|
|style="background:LightGrey; color:black"|Batch size
1-25 wafers at a time
|style="background:WhiteSmoke; color:black"|
|
*1-25 wafers at a time  
1-25 wafer at a time
|style="background:WhiteSmoke; color:black"|
*1-25 wafers at a time
|style="background:WhiteSmoke; color:black"|
*1-7 wafers at a time  
|-
|-
|Size of substrate
|style="background:LightGrey; color:black"|Size of substrate
|
|style="background:WhiteSmoke; color:black"|
4" wafers
*4”-6" wafers
|
|style="background:WhiteSmoke; color:black"|
4" wafers
*4”-6" wafers
|style="background:WhiteSmoke; color:black"|
*2” wafers
*4” wafers
*6” wafers
*Small pieces
|-
|-
|Allowed materials
|style="background:LightGrey; color:black"|Allowed materials
|
|style="background:WhiteSmoke; color:black"|
*Aluminium
*Silicon
*Silicon
*Silicon Oxide
*Silicon oxide
*Silicon Nitride
*Silicon (oxy)nitride
*Silicon Oxynitride
|style="background:WhiteSmoke; color:black"|
*Photoresist
*E-beam resist
|
*Aluminium
*Silicon
*Silicon
*Silicon Oxide
*Silicon oxide
*Silicon Nitride
*Silicon (oxy)nitride
*Silicon Oxynitride
|style="background:WhiteSmoke; color:black"|
*Photoresist
*All except for Polymers
*E-beam resist
|-
|style="background:LightGrey; color:black"|Masking material
|style="background:WhiteSmoke; color:black"|
*Stoichiometric Si3N4
*Silicon rich nitride SiN
*PECVD Si3N4
*Thermal SiO2
|style="background:WhiteSmoke; color:black"|
*Stoichiometric Si3N4
*Silicon rich nitride SiN
*PECVD Si3N4
*Thermal SiO2
|style="background:WhiteSmoke; color:black"|
*Stoichiometric Si3N4
*Silicon rich nitride SiN
*PECVD Si3N4
*Thermal SiO2
|-
|-
|}
|}
<sup>{{fn|1}}</sup> Measured by Eric Jensen from DTU-Nanotech, October 2013.
<br clear="all" />

Latest revision as of 12:13, 11 April 2024

Feedback to this page: click here

Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.

All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.

Si etch - Anisotropic silicon etch

KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.

KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si3N4- or SiO2-masking materials and the potassium contamination of the surface. The latter necessitates in most cases a wet post-clean ('7-up' or RCA-clean) if the wafer is to be processed further.

At DTU Nanolab we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO2-mask - is depending on the temperature. We normally use T=80 oC but may choose to reduce this to e.g. 60 oC or 70 oC in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 oC (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch. Etching with IPA added to the KOH solution (250ml IPA/1000ml KOH) can be done in KOH fumehood.


The user manuals, quality control procedures and results, user APVs, technical information and contact information can be found in LabManager:


Si Etch 1: KOH info page in LabManager,

Si Etch 2: KOH info page in LabManager,

Si Etch 3: KOH info page in LabManager

Process Information

KOH etching baths

Key facts for the different etch baths available at DTU Nanolab are resumed in the table:


Equipment Si Etch 01: KOH Si Etch 02: KOH Si Etch 03: KOH
Purpose
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH

The bath is dedicated wafers with metal or otherwise dirty wafers

Link to safety APV and SDS
Performance Etch rates in crystalline silicon (100)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
Etch rates in crystalline silicon (110)
  • 2.5 µm/min (80 °C)
  • 2.5 µm/min (80 °C)
  • 2.5 µm/min (80 °C)
Etch rates in Thermal SiO2
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
Etch rates in other oxides

.

yannickseis@nbi.ku nov. 2017 @80 °C:

  • BPSG from PECVD4: 311nm in about 3 min
  • Waveguide oxide from PECVD4: 320nm etched in 26 min
  • TEOS oxide from furnace: 300nm etched in 11 min

jemafh@nilt 2019-Marts:

  • Standard from PECVD3: selectivity 1:100 to Si

.

Etch rates in PECVD SiN See etchrates for PECVD SiN here
Roughness
  • Typical: 100-600 Å
  • Typical: 100-600 Å
  • May be high due to contamination and poor controlled concentration of the KOH solution
Anisotropy
  • The etch rate is very dependent on the crystal orientation of the silicon.
  • The etch rate is very dependent on the crystal orientation of the silicon.
  • The etch rate is very dependent on the crystal orientation of the silicon.
Process parameter range Chemical solution
  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 500 g : 1000 ml, when using pills KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 500 g : 1000 ml, when using pills KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

Temperature
  • Max 80 °C (standard etch)
  • Max 80 °C
  • Max 80 °C
Substrates Batch size
  • 1-25 wafers at a time
  • 1-25 wafers at a time
  • 1-7 wafers at a time
Size of substrate
  • 4”-6" wafers
  • 4”-6" wafers
  • 2” wafers
  • 4” wafers
  • 6” wafers
  • Small pieces
Allowed materials
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • All except for Polymers
Masking material
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2

1 Measured by Eric Jensen from DTU-Nanotech, October 2013.