Specific Process Knowledge/Back-end processing/Laser Micromachining Tool: Difference between revisions

From LabAdviser
Chasil (talk | contribs)
Rkch (talk | contribs)
No edit summary
 
(151 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:danchipsupport@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php?title=Specific_Process_Knowledge/Back-end_processing/Laser_Micromachining_Tool click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20https://labadviser.nanolab.dtu.dk//index.php?title=Specific_Process_Knowledge/Back-end_processing/Laser_Micromachining_Tool click here]'''
<!-- Replace "http://labadviser.danchip.dtu.dk/..." wih the link to the Labadviser page-->
<!-- Replace "http://labadviser.danchip.dtu.dk/..." wih the link to the Labadviser page-->


==Laser Micromachining Tool [[Image:section under construction.jpg|70px]] ==
'''Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.'''


[[File:Laser_Micromachining_Tool_main_parts_drawing.jpg|400px|thumb|Lasertool microSTRUCT vario (3D-Micromac AG)]]
'''All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.'''
 
==Laser Micromachining Tool ==
 
[[File:LaserTool_photo.png|400px|thumb|Lasertool microSTRUCT vario (3D-Micromac AG)]]
[[File:Inside_Camera_liveview.jpg|400px|thumb|Inside lasertool]]
[[File:Inside_Camera_liveview.jpg|400px|thumb|Inside lasertool]]


Line 16: Line 20:
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=309]
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=309]


It is equipped with 2 high power lasers:
It is equipped with 2 high power lasers :


* a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this article: [http://www.time-bandwidth.com/upload/press/weingartenlasertechnikjournalvol6issue3p51.pdf)] )
* a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this article: [http://www.time-bandwidth.com/upload/press/weingartenlasertechnikjournalvol6issue3p51.pdf] ) with a pulse repetition rate from 200kHz up to 8000kHz.
*: and a
*: and a
* a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series).
* a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series) with a pulse repetition rate of 100kHz (currently out of use).


The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc.
The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc.
It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching.
It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching.


== Process information [[Image:section under construction.jpg|70px]] ==
The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info [[Specific_Process_Knowledge/Pattern_Design| here]].
 
== Technical specifications ==
 
*[[/Spot size and optics|Spot size and optics]]
*[[/Lasers sources|Lasers sources]]
 
== Performances ==
 
{| border="2" cellspacing="0" cellpadding="10" width="70%"
|-
!style="background:silver; color:black;" align="left"|Purpose
|style="background:LightGrey; color:black"|Patterning, milling and dicing substrates
|style="background:WhiteSmoke; color:black"|Mainly for patterning, milling, drilling with high aspect ratio and dicing substrate with micrometric shapes and above (>  10µm)
|-
!style="background:silver; color:black" align="left" valign="top" rowspan="4"|Performances
|style="background:LightGrey; color:black"|Resolution
|style="background:WhiteSmoke; color:black"|
Down to 10µm with the blue laser (355nm). Depending on the depth wished.
|-
|style="background:LightGrey; color:black"|Maximum writing area
|style="background:WhiteSmoke; color:black"|
Depends of the optics. Max size :
* Blue (145x145mm)
 
* Green ( 165x165mm)
 
* Red (165x165mm)
|-
|style="background:LightGrey; color:black"|Max. output power @100%(laser TB width – picosecond)
|style="background:WhiteSmoke; color:black"|
{| {{table}}
| align="left"|
{| border="1" cellspacing="1" cellpadding="2"  align="left" style="width:600px"
! Values from SAT (Nov. 2012)
! Current values (Dec. 2018)
|-
| Repetition rate : 200kHz
* 355nm, F103mm : 11,93W
* 532nm, F255mm : 24,62W
* 1064nm, F255mm : 34,24W
 
Repetition rate : 1000 kHz
 
* 355nm, F103mm : 4,28W
* 532nm, F255mm : 18,40W
* 1064nm, F255mm: 40,09W
 
Repetition rate : 8000 kHz
 
* 355nm, F103mm : 0,26W
* 532nm, F255mm  : 4,82W
* 1064nm, F255mm : 42,40W
 
| Repetition rate : 200 kHz
* 355nm, F103mm : 15 W
* 532nm, F255mm: not measured
* 1064nm, F255mm: 32 W
 
Repetition rate : 1000 kHz
 
* 355nm, F103mm : 5,5 W
* 532nm : not measured
* 1064nm : 38 W
 
Repetition rate : 8000 kHz
 
* 355nm, F103mm: 0,3 W
* 532nm, F255mm: not measured
* 1064nm, F255mm: 41 W
|}
* [[media:AvgPower_1064nm_F255mm.png|Graph 1064nm, F255nm Avg. output power]]
* [[media:AvgPower_355nm_F103mm.png|Graph 355nm, F103nm Avg. output power]]
 
|}
|-
 
|style="background:LightGrey; color:black"|[[media:140618_AverageOutputPower_IPG.jpg|Output power@100%(laser IPG – nanosecond)]]
|style="background:WhiteSmoke; color:black"|
Repetition rate : 10kHz to 100kHz (Currently non-available)
 
* 1064nm : 80W
|-
!style="background:silver; color:black" align="left" valign="top" rowspan="2"|Substrates
|style="background:LightGrey; color:black"|Material allowed
|style="background:WhiteSmoke; color:black"|
* Silicon
* Silicon + Si3N4 and/or SiO2
* Silicon with resist
* Aluminum
* Steel
* Pyrex
* Fused silicate (quartz)
* Topas
* Nickel
* Tungsten
* if not in the list ask machine responsible
|-
|style="background:LightGrey; color:black"|Material NOT allowed
|style="background:WhiteSmoke; color:black"|
* PTFE (teflon)
|-
!style="background:silver; color:black" align="left" valign="top" rowspan="1"|Parameters
| style="background:LightGrey; color:black"|Characteristics
|style="background:WhiteSmoke; color:black"|
* Speed up to 2000 mm/s
* M2 factor : <1.3
* Beam shape : Gaussian
{|
|-
|}
| align="center" |
 
|}
 
== Process information ==
 
=== Result from the acceptance test ===
 
*[[/Laser Micromachining Tool acceptance test|Results from Laser Micromachining Tool acceptance test]]
 
=== Results from default process [[Image:section under construction.jpg|70px]] ===


*[[/Silicon cutting and milling|Silicon cutting and milling]]
*[[/Borofloat cutting and milling|Borofloat glass cutting and milling]]
*[[/Quartz cutting and milling|Quartz cutting and milling]]
*[[/Nickel cutting and milling|Nickel cutting and milling]] (for [[Specific Process Knowledge/Back-end processing/Polymer Injection Molder|Polymer Injection Molder]])
*[[../Mask making|Mask making]]
*[[../Mask making|Mask making]]


=== Laser Processing details ===
=== Laser Processing parameters ===
 
The following parameters provide information about the necessary values for machining different materials. However, most parameters can be further optimized in order to reduce the amount of debris and/or reduce the process time.


<!--  
<!--  
Line 132: Line 255:
| Easily break silicon in cristal plan. Depth of the groove : 25µm  
| Easily break silicon in cristal plan. Depth of the groove : 25µm  
|- style="background:LightGray;text-align:center" valign="top"
|- style="background:LightGray;text-align:center" valign="top"
| Silicon (525µm) + Si3N4 (150nm to 1,2µm) OR SiO2 (150nm to 320nm)
| Silicon (525µm) + Si3N4 (150nm up to 1,2µm) OR SiO2 (150nm up to 320nm)
| Red (1064nm/255mm)
| Red (1064nm/255mm)
| 200 kHz
| 200 kHz
Line 144: Line 267:
| 50 µm
| 50 µm
| [[media:TB_1064nm_255mm_cutting_Si_Si3N4.xls|Silicon nitride cutting parameters]]
| [[media:TB_1064nm_255mm_cutting_Si_Si3N4.xls|Silicon nitride cutting parameters]]
| Samples can easily be removed with a soft mechanical pressure. A layer of resist can be deposited on the top without influenced the dicing.
| Samples can easily be removed with a soft mechanical pressure. A layer of resist can be deposited on the top without influenced the dicing. Thicker layers (oxyde or nitride) have not been tested.
|-
|-
|- style="background:LightGray;text-align:center" valign="top"
|- style="background:LightGray;text-align:center" valign="top"
Line 174: Line 297:
| 20 µm
| 20 µm
| [[media:TB_1064nm_255mm_cutting_pyrex_microfluidic_hole.xls|Cutting Pyrex 1000µm for microfluidic hole parameters]]
| [[media:TB_1064nm_255mm_cutting_pyrex_microfluidic_hole.xls|Cutting Pyrex 1000µm for microfluidic hole parameters]]
| Increase/decrease the number of iteration to increase/decrease the width of the hole. [[file:pyrex_10um_hole_chanel.jpg|Microscope view of the chanel  ]]
| Increase/decrease the number of iteration to increase/decrease the width of the hole. [[media:pyrex_10um_hole_chanel.jpg|Microscope view of the chanel  ]]
|-
|-
|- style="background:LightGray;text-align:center" valign="top"
|- style="background:LightGray;text-align:center" valign="top"
Line 188: Line 311:
| 4
| 4
| 20 µm
| 20 µm
| [[media:Cutting_Pyrex_1064nm_255mm.xls|Cutting Pyrex 525µm parameters]]
| [[media:TB_1064nm_255mm_cutting_Pyrex_525um.xls|Cutting Pyrex 525µm parameters]]
| Cutting through. Dicing circle.  
| Cutting through. Dicing circle. Can probably be optimized: 3 lines may be enough and half the iterations (tried by Azeem)
|-
|- style="background:LightGray;text-align:center" valign="top"
| Steel (50µm)
| Green(532nm/255mm)
| 200 kHz
| 20%
| 0,55 W
| 500 mm/s
| 1 burst
| 0
| 22
|
|
| [[media:TB_532nm_255mm_cutting_shim_steel_50um.xls|Cutting steel 50µm]]
| Cutting shrim for Injection molder.
|-
|- style="background:LightGray;text-align:center" valign="top"
| Steel (100µm)
| Green(532nm/255mm)
| 200 kHz
| 25%
| 0,55 W
| 500 mm/s
| 1 burst
| 0
| 35
|
|
| [[media:TB_532nm_255mm_cutting_shim_steel_100um.xls|Cutting steel 100µm]]
| Cutting shrim for Injection molder.
|-
|- style="background:LightGray;text-align:center" valign="top"
| Steel (200µm)
| Green(532nm/255mm)
| 200 kHz
| 25%
| 0,55 W
| 500 mm/s
| 1 burst
| 0
| 72
|
|
| [[media:TB_532nm_255mm_cutting_shim_steel_200um.xls|Cutting steel 200µm]]
| Cutting shrim for Injection molder.  
|-
|-
|- style="background:LightGray;text-align:center" valign="top"
| Aluminum (400µm)
| Green(532nm/255mm)
| 200 kHz
| 100%
| ?? W
| 100 mm/s
| 3 bursts
| 0
| 35-40
| 4
| 20
| [[media:Shaddowmask_al_lambda_532nm,_F_255mm.xls‎|cutting Al 400µm]]
| Cutting shadowmask for Wordentec.
|-
|- style="background:LightGray;text-align:center" valign="top"
| Aluminum (600µm)
| Red IPG(1064nm/255mm)
| 100 kHz
| 100%
| - W
| 1000 mm/s
| 1 bursts
| 0
| 110
| 4
| 40
| [[media:Aluminium_cut_IPG Lambda 1064nm, F 255mm.xls‎|cutting Al 600µm]]
| Shadowmask. 
|}
|}


 
  The parameter filename extension is here set to .xls because of MediaWiki restrictions. The 3DMM laser software uses .par as parameter file extension.
 
 
  The parameter filename extension is here set to .doc because of MediaWiki restrictions. The 3DMM laser software uses .par as parameter file extension.
  The file should be a pure text-file with no formatting codes etc.
  The file should be a pure text-file with no formatting codes etc.

Latest revision as of 15:11, 6 February 2023

Feedback to this page: click here

Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.

All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.

Laser Micromachining Tool

Lasertool microSTRUCT vario (3D-Micromac AG)
Inside lasertool

The Laser Micromachining Tool is a microSTRUCT vario from the company 3D-Micromac AG.

The machine is located in the basement of building 346 under the cleanroom.

The user manual(s), user APV(s), technical information and contact information can be found in LabManager: [1]

It is equipped with 2 high power lasers :

  • a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this article: [2] ) with a pulse repetition rate from 200kHz up to 8000kHz.
    and a
  • a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series) with a pulse repetition rate of 100kHz (currently out of use).

The system is able to produce micro structures in different kinds of materials like metals, ceramics, composite materials, etc. It can produce features down to ~10µm size over a large area. It can scan over an area of up to ~15x15cm without moving the sample. By moving the sample on the large x-y-stage this area can be extended by stitching.

The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info here.

Technical specifications

Performances

Purpose Patterning, milling and dicing substrates Mainly for patterning, milling, drilling with high aspect ratio and dicing substrate with micrometric shapes and above (> 10µm)
Performances Resolution

Down to 10µm with the blue laser (355nm). Depending on the depth wished.

Maximum writing area

Depends of the optics. Max size :

  • Blue (145x145mm)
  • Green ( 165x165mm)
  • Red (165x165mm)
Max. output power @100%(laser TB width – picosecond)
Values from SAT (Nov. 2012) Current values (Dec. 2018)
Repetition rate : 200kHz
  • 355nm, F103mm : 11,93W
  • 532nm, F255mm : 24,62W
  • 1064nm, F255mm : 34,24W

Repetition rate : 1000 kHz

  • 355nm, F103mm : 4,28W
  • 532nm, F255mm : 18,40W
  • 1064nm, F255mm: 40,09W

Repetition rate : 8000 kHz

  • 355nm, F103mm : 0,26W
  • 532nm, F255mm  : 4,82W
  • 1064nm, F255mm : 42,40W
Repetition rate : 200 kHz
  • 355nm, F103mm : 15 W
  • 532nm, F255mm: not measured
  • 1064nm, F255mm: 32 W

Repetition rate : 1000 kHz

  • 355nm, F103mm : 5,5 W
  • 532nm : not measured
  • 1064nm : 38 W

Repetition rate : 8000 kHz

  • 355nm, F103mm: 0,3 W
  • 532nm, F255mm: not measured
  • 1064nm, F255mm: 41 W
Output power@100%(laser IPG – nanosecond)

Repetition rate : 10kHz to 100kHz (Currently non-available)

  • 1064nm : 80W
Substrates Material allowed
  • Silicon
  • Silicon + Si3N4 and/or SiO2
  • Silicon with resist
  • Aluminum
  • Steel
  • Pyrex
  • Fused silicate (quartz)
  • Topas
  • Nickel
  • Tungsten
  • if not in the list ask machine responsible
Material NOT allowed
  • PTFE (teflon)
Parameters Characteristics
  • Speed up to 2000 mm/s
  • M2 factor : <1.3
  • Beam shape : Gaussian

Process information

Result from the acceptance test

Results from default process

Laser Processing parameters

The following parameters provide information about the necessary values for machining different materials. However, most parameters can be further optimized in order to reduce the amount of debris and/or reduce the process time.


Material Optics Frequency Intensity Power measured @10% Writing speed Number of burst Number of Z-offset Number of iteration Number of parallel lines Gap in between line Parameter file Comments
Silicon 525µm Green(532nm/255mm) 200 kHz 100% 0,57 W 50 mm/s 1 burst none 4 1 N/A Silicon dicing green parameters Easily break silicon in cristal plan. Depth of the groove : 25µm
Silicon (525µm) + Si3N4 (150nm up to 1,2µm) OR SiO2 (150nm up to 320nm) Red (1064nm/255mm) 200 kHz 100% 2,8 W 1000 mm/s 3 bursts 1 (-0,3mm) 350/100 4 50 µm Silicon nitride cutting parameters Samples can easily be removed with a soft mechanical pressure. A layer of resist can be deposited on the top without influenced the dicing. Thicker layers (oxyde or nitride) have not been tested.
Nickel (320µm) Green(532nm/255mm) 200 kHz 100% 0,64 W 300 mm/s 3 burst none 4320 1 N/A Cutting Ni 320µm parameters Cutting through only blue tape left
Pyrex (1000µm) Red(1064nm/255mm) 200 kHz 100% 2,8 W 1000 mm/s 1 burst none 99 13 20 µm Cutting Pyrex 1000µm for microfluidic hole parameters Increase/decrease the number of iteration to increase/decrease the width of the hole. Microscope view of the chanel
Pyrex/Borosilicate glass (525µm) Red(1064nm/255mm) 200 kHz 100% 2,96 W 1000 mm/s 1 burst 4 (-0,1/-0,2/-0,3/-0,4mm) 300/500/700/900/1200 4 20 µm Cutting Pyrex 525µm parameters Cutting through. Dicing circle. Can probably be optimized: 3 lines may be enough and half the iterations (tried by Azeem)
Steel (50µm) Green(532nm/255mm) 200 kHz 20% 0,55 W 500 mm/s 1 burst 0 22 Cutting steel 50µm Cutting shrim for Injection molder.
Steel (100µm) Green(532nm/255mm) 200 kHz 25% 0,55 W 500 mm/s 1 burst 0 35 Cutting steel 100µm Cutting shrim for Injection molder.
Steel (200µm) Green(532nm/255mm) 200 kHz 25% 0,55 W 500 mm/s 1 burst 0 72 Cutting steel 200µm Cutting shrim for Injection molder.
Aluminum (400µm) Green(532nm/255mm) 200 kHz 100% ?? W 100 mm/s 3 bursts 0 35-40 4 20 cutting Al 400µm Cutting shadowmask for Wordentec.
Aluminum (600µm) Red IPG(1064nm/255mm) 100 kHz 100% - W 1000 mm/s 1 bursts 0 110 4 40 cutting Al 600µm Shadowmask.
The parameter filename extension is here set to .xls because of MediaWiki restrictions. The 3DMM laser software uses .par as parameter file extension.
The file should be a pure text-file with no formatting codes etc.