Jump to content

Specific Process Knowledge/Etch/DRIE-Pegasus: Difference between revisions

Jmli (talk | contribs)
Jmli (talk | contribs)
No edit summary
 
(11 intermediate revisions by 2 users not shown)
Line 7: Line 7:
{{Template:Author-jmli1}}
{{Template:Author-jmli1}}
<!--Checked for updates on 2/02-2023 - ok/jmli -->
<!--Checked for updates on 2/02-2023 - ok/jmli -->
<!--Checked for updates on 21/10-2025 - ok/jmli -->


In 2010 DTU Nanolab acquired DRIE-Pegasus 1 (at the time called Danchip and DRIE-Pegasus, respectively). As a state-of-the-art etch tool with excellent performance and great flexibility, it grew immensely popular and by 2015 it was apparent that we needed yet another tool to cope with the demand. Therefore, in 2016 Pegasus 2 was acquired from a closed-down lab in Morocco and installed next to Pegasus 1.
In 2010 DTU Nanolab acquired DRIE-Pegasus 1. As a state-of-the-art etch tool with excellent performance and great flexibility, it grew immensely popular and by 2015 it was apparent that we needed yet another tool to cope with the demand. Therefore, in 2016 Pegasus 2 was acquired from a closed-down lab and installed next to Pegasus 1.


Looking to expand our dry etching capabilities in 2017 we got an irresistible offer on a twin Pegasus system with cassette to cassette vacuum robot from a commerciel fab. The twin Pegasus system (called Pegasus 3 and 4) is installed at the old cluster 2 location in cleanroom C1 and will run only 6" wafers. Pegasus 3 is the 6" silicon etch work horse and Pegasus 4 is converted (adding extra process gases) into a 6" dielectric etch tool that will supplement/replace the AOE.  
Looking to expand our dry etching capabilities in 2017 we got an irresistible offer on a twin Pegasus system with cassette to cassette vacuum robot from a commercial fab. The twin Pegasus system (called Pegasus 3 and 4) is installed at the old cluster 2 location in cleanroom C1 and will run only 6" wafers. Pegasus 3 is the 6" silicon etch work horse and Pegasus 4 is converted (adding extra process gases) into a 6" dielectric etch tool that will supplement/replace the AOE.  


This page was originally intended as a regular one-machine page (the Pegasus 1 page). However, as of 2018 with several tools, the page will serve as common page for all of our Pegasi with subpages for each tool.
This page was originally intended as a regular one-machine page (the Pegasus 1 page). However, as of 2018 with several tools, the page will serve as common page for all of our Pegasi with subpages for each tool.


{|
{|
|width="200"| [[file:DRIE-Pegasus.jpg |200px|frameless]]
|width="100"| [[file:DRIE-Pegasus.jpg |100px|frameless]]
| width="400"| [[file:Pegasus 2 operator.jpg |408px|frameless]]
| width="200"| [[file:Pegasus 2 operator.jpg |204px|frameless]]
| width="550"|[[file:Peg3and4 front 2.JPG |584px|frameless]]
| width="275"|[[file:Peg3and4 front 2.JPG |292px|frameless]]
|-  
|-  
| align="center" | The DRIE-Pegasus 1 load lock and cassette loader in the DTU Nanolab cleanroom A-1. {{photo1}}
| align="center" | The DRIE-Pegasus 1 load lock and cassette loader in the DTU Nanolab cleanroom A-1. {{photo1}}
Line 120: Line 121:
* Ar: 0 to 283 sccm
* Ar: 0 to 283 sccm
|style="background:lightgrey; color:black"|
|style="background:lightgrey; color:black"|
* SF<sub>6</sub>: 0 to 1200 sccm
* SF<sub>6</sub>-1: 0 to 1200 sccm
* SF<sub>6</sub>-2: 0 to 100 sccm
* O<sub>2</sub>: 0 to 50 sccm
* N<sub>2</sub>: 0 to 500 sccm
* Ar: 0 to 283 sccm
* He: 0 to 11 sccm
|style="background:lightgrey; color:black"|
* SF<sub>6</sub>-1: 0 to 1200 sccm
* SF<sub>6</sub>-2: 0 to 100 sccm
* O<sub>2</sub>: 0 to 200 sccm
* O<sub>2</sub>: 0 to 200 sccm
* C<sub>4</sub>F<sub>8</sub>: 0 to 400 sccm
* C<sub>4</sub>F<sub>8</sub>: 0 to 400 sccm
* Ar: 0 to 283 sccm
* Ar: 0 to 283 sccm
|style="background:lightgrey; color:black"|
* SF<sub>6</sub>
* O<sub>2</sub>
* C<sub>4</sub>F<sub>8</sub>
* Ar
|style="background:lightgrey; color:black"|
|style="background:lightgrey; color:black"|
{|
{|
Line 254: Line 258:




==Comparison of SEM's in building 346/451==
{| border="2" cellspacing="0" cellpadding="0"
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment
|style="background:WhiteSmoke; color:black" align="center"|[[Specific_Process_Knowledge/Characterization/SEM_Supra_1|SEM Supra 1]]
|style="background:WhiteSmoke; color:black" align="center"|[[Specific_Process_Knowledge/Characterization/SEM_Supra_2|SEM Supra 2]]
|style="background:WhiteSmoke; color:black" align="center"|[[Specific_Process_Knowledge/Characterization/SEM_Supra_3|SEM Supra 3]]
<i>Under installation (August 2023)</i>
|style="background:WhiteSmoke; color:black" align="center"|[[Specific_Process_Knowledge/Characterization/SEM_Tabletop_1|SEM Tabletop 1]]
<!--|style="background:WhiteSmoke; color:black" align="center"|[[Specific Process Knowledge/Characterization/SEM FEI QUANTA 200 3D|FEI Quanta 200 3D]]-->
|-
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Model
|style="background:WhiteSmoke; color:black" align="center"| Zeiss Supra 40 VP
|style="background:WhiteSmoke; color:black" align="center"| Zeiss Supra 60 VP
|style="background:WhiteSmoke; color:black" align="center"| Zeiss Supra 40 VP
|style="background:WhiteSmoke; color:black" align="center"| SEM Tabletop 1
<!--|style="background:WhiteSmoke; color:black" align="center"| FEI Quanta 200 3D-->
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Purpose
|style="background:LightGrey; color:black" align="center" | Imaging and measurement of
|style="background:WhiteSmoke; color:black"|
* Conducting samples
* Semi-conducting samples
* Thin (~ 5 µm <) layers of non-conducting materials such as polymers
* Thick polymers, glass or quartz samples
|style="background:WhiteSmoke; color:black"|
* Conducting samples
* Semi-conducting samples
* Thin (~ 5 µm <) layers of non-conducting materials such as polymers
* Thick polymers, glass or quartz samples
|style="background:WhiteSmoke; color:black"|
* Conducting samples
* Semi-conducting samples
* Thin (~ 5 µm <) layers of non-conducting materials such as polymers
* Thick polymers, glass or quartz samples
|style="background:WhiteSmoke; color:black"|
* Conducting samples
* Semi-conducting samples
* Thin (~ 5 µm <) layers of non-conducting materials such as polymers
* Thick polymers, glass or quartz samples
<!--|style="background:WhiteSmoke; color:black"|
* Conductive samples-->
|-
|style="background:LightGrey; color:black" align="center" |Other purpose
|style="background:WhiteSmoke; color:black"| <!-- comment -->
|style="background:WhiteSmoke; color:black"|
* Surface material analysis using EDX
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
|-
!style="background:silver; color:black;" align="center" width="60"|Instrument location
|style="background:LightGrey; color:black"|
|style="background:WhiteSmoke; color:black"|
*Basement of building 346
|style="background:WhiteSmoke; color:black"|
*Cleanroom of DTU Nanolab in building 346
|style="background:WhiteSmoke; color:black"|
*Cleanroom of DTU Nanolab in building 346
|style="background:WhiteSmoke; color:black"|
*Building 451 - room 913
(in the North-East corner of the building's basement)
<!--|style="background:WhiteSmoke; color:black"|
*DTU CEN-->
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Performance
|style="background:LightGrey; color:black" rowspan="2" align="center" |Resolution
|style="background:Whitesmoke; color:black" colspan="5" align="center"| The resolution of a SEM is strongly dependent on the type of sample and the skills of the operator. The highest resolution is probably only achieved on special samples
|-
|style="background:WhiteSmoke; color:black"|
* 1-2 nm (limited by vibrations)
|style="background:WhiteSmoke; color:black"|
* 1-2 nm (limited by vibrations)
|style="background:WhiteSmoke; color:black"|
* 1-2 nm (limited by vibrations)
<!--|style="background:WhiteSmoke; color:black"|
* ~3.5 nm (limited by instrument)-->
|style="background:WhiteSmoke; color:black"|
* ~25 nm (limited by instrument)
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="5"|Instrument specifics
|style="background:LightGrey; color:black" align="center" |Detectors
|style="background:WhiteSmoke; color:black"|
* Secondary electron (Se2)
* Inlens secondary electron (Inlens)
* 4 Quadrant Backscatter electron (QBSD)
* Variable pressure secondary electron (VPSE)
|style="background:WhiteSmoke; color:black"|
* Secondary electron (Se2)
* Inlens secondary electron (Inlens)
* 4 Quadrant Backscatter electron (QBSD)
* Variable pressure secondary electron (VPSE)
|style="background:WhiteSmoke; color:black"|
* Secondary electron (Se2)
* Inlens secondary electron (Inlens)
* High Definition four quadrant Angular Selective Backscattered electron detector (HDAsB)
* Variable pressure secondary electron (VPSE)
<!--|style="background:WhiteSmoke; color:black"|
* Secondary electron (Everhart-Thornley (ETD))
* Backscatter electron (BSD) - Add-on
* Large Field Detector (LFD) - Add-on
* CCD camera -->
|style="background:WhiteSmoke; color:black"|
* Secondary electron (SE)
* Backscatter electron (BSE)
|-
|style="background:LightGrey; color:black" align="center" |Stage
|style="background:WhiteSmoke; color:black"|
* X, Y: 130 &times; 130 mm
* T: -4 to 70<sup>o</sup>
* R: 360<sup>o</sup>
* Z: 50 mm
|style="background:WhiteSmoke; color:black"|
* X, Y: 150 &times; 150 mm
* T: -10 to 70<sup>o</sup>
* R: 360<sup>o</sup>
* Z: 50 mm
|style="background:WhiteSmoke; color:black"|
* X, Y: 130 &times; 130 mm
* T: -4 to 70<sup>o</sup>
* R: 360<sup>o</sup>
* Z: 50 mm
|style="background:WhiteSmoke; color:black"|
* X, Y: 35 mm
* T: No tilt
* R: No rotation
* Z: 0 mm
|-
|style="background:LightGrey; color:black" align="center" |Electron source
|style="background:Whitesmoke; color:black" colspan="4" align="center"| FEG (Field Emission Gun) source
|style="background:WhiteSmoke; color:black"|
* Thermionic tungsten filament
<!--|style="background:WhiteSmoke; color:black"|
* Tungsten filament-->
|-
|style="background:LightGrey; color:black" align="center" |Operating pressures
|style="background:WhiteSmoke; color:black"|
* Fixed at High vacuum (2 &times; 10<sup>-4</sup>mbar - 10<sup>-6</sup>mbar)
* Variable at Low vacuum (0.1 mbar-2 mbar)
|style="background:WhiteSmoke; color:black"|
* Fixed at High vacuum (2 &times; 10<sup>-4</sup>mbar - 10<sup>-6</sup>mbar)
* Variable at Low vacuum (0.1 mbar-2 mbar)
|style="background:WhiteSmoke; color:black"|
* Fixed at High vacuum (2 &times; 10<sup>-4</sup>mbar - 10<sup>-6</sup>mbar)
* Variable at Low vacuum (0.1 mbar-2 mbar)
|style="background:WhiteSmoke; color:black"|
* Conductor vacuum mode: 5 Pa
* Standard vacuum mode: 30 Pa
* Charge-up reduction vacuum mode: 50 Pa
<!--|style="background:WhiteSmoke; color:black"|
* High vacuum and Low vacuum-->
|-
|style="background:LightGrey; color:black" align="center" |Options
|style="background:WhiteSmoke; color:black"|
* All software options available
* Electron magnetic noise cancellations system
|style="background:WhiteSmoke; color:black"|
* Antivibration platform
* Fjeld M-200 airlock taking up to 8" wafers
* Oxford Instruments X-Max<sup>N</sup> 50 mm<sup>2</sup> SDD EDX detector and AZtec software package
|style="background:WhiteSmoke; color:black"|
*High Definition four quadrant Angular Selective Backscattered electron detector (HDAsB)
|style="background:WhiteSmoke; color:black"|
<!--|style="background:WhiteSmoke; color:black"|
* Focused ion beam (FIB) (Ga<sup>+</sup> ions)-->
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="3" align="center" |Substrates
|style="background:LightGrey; color:black" align="center" |Sample sizes
|style="background:WhiteSmoke; color:black"|
* Up to 6" wafer with full view
|style="background:WhiteSmoke; color:black"|
* Up to 8" wafer with 6" view
|style="background:WhiteSmoke; color:black"|
*  Up to 6" wafer with full view
|style="background:WhiteSmoke; color:black"|
*  Up to 6" wafer with full view
|style="background:WhiteSmoke; color:black"|
*  Up to 70 mm with full wiew
<!--|style="background:WhiteSmoke; color:black"|
* Wafers won´t fit without a proper holder. The height of the sample is critical, should be as small, as possible-->
|-
| style="background:LightGrey; color:black" align="center" |Allowed materials
|style="background:WhiteSmoke; color:black"|
* Any standard cleanroom material and samples from the Laser Micromachining tool and the Polymer Injection Molding tool
|style="background:WhiteSmoke; color:black"|
* Any standard cleanroom materials
|style="background:WhiteSmoke; color:black"|
* Any standard cleanroom materials
|style="background:WhiteSmoke; color:black"|
* Any standard cleanroom material and samples from the Laser Micromachining tool and the Polymer Injection Molding tool
* Some biological samples (ask for permission)
<!--|style="background:WhiteSmoke; color:black"|
* Conductive materials
* No biological samples-->
|-
|}
<br clear="all" />


===Hardware changes===
===Hardware changes===