Specific Process Knowledge/Characterization/PL mapper: Difference between revisions
Appearance
No edit summary |
|||
| (5 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
{{cc-nanolab}} | |||
'''Feedback to this page''': '''[mailto:labadviser@Nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.Nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/characterisation/PL_Mapper click here]''' | '''Feedback to this page''': '''[mailto:labadviser@Nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.Nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/characterisation/PL_Mapper click here]''' | ||
<br> | |||
<br> | |||
==PhotoLuminescence Mapper RPM2000 == | |||
[[Image:PL-mapper.jpg|500px|right|thumb|Positioned in the MOCVD room: F-1, {{photo1}}]] | |||
Photoluminescence mapping is a non-contact, non-destructive technique for mapping out uniformity of alloy composition, material quality and defects in substrates and of III-V epiwafers. The Rapid Photoluminiscence Mapper (RPM) is equipped with 3 lasers for PL measurements and a white-light source to map out thickness and reflectance of eg layers, microcavities and VCSELs. | Photoluminescence mapping is a non-contact, non-destructive technique for mapping out uniformity of alloy composition, material quality and defects in substrates and of III-V epiwafers. The Rapid Photoluminiscence Mapper (RPM) is equipped with 3 lasers for PL measurements and a white-light source to map out thickness and reflectance of eg layers, microcavities and VCSELs. | ||
[[Image:Wafer-bonding PL-mapper (LabAdviser) Jehem.jpg|500px|right|thumb|Map of two bonded silicon wafers. Red areas are voids between the wafers]] | [[Image:Wafer-bonding PL-mapper (LabAdviser) Jehem.jpg|500px|right|thumb|Map of two bonded silicon wafers. Red areas are voids between the wafers, Made by Jens Hemmingsen @ DTU Nanolab]] | ||
It can also be used to map out voids after silicon wafer-bonding. This is done using the reflectance mapping and is using the fact that silicon is transparent for wavelengths above ~1000nm. A void will therefor change the reflectance in that wavelength range. See datasheet below (Thanks to Jens Hemmingsen for the data). | It can also be used to map out voids after silicon wafer-bonding. This is done using the reflectance mapping and is using the fact that silicon is transparent for wavelengths above ~1000nm. A void will therefor change the reflectance in that wavelength range. See datasheet below (Thanks to Jens Hemmingsen for the data). | ||
The user manual and contact information can be found in [http://www.labmanager.dtu.dk/function.php?module=Machine&view=view&mach=152 '''LabManager''']. | |||
[http://www.labmanager.dtu.dk/function.php?module=Machine&view=view&mach=152 | |||
{| border="2" cellspacing="0" cellpadding="10" | {| border="2" cellspacing="0" cellpadding="10" | ||