Jump to content

Specific Process Knowledge/Back-end processing/Laser Micromachining Tool: Difference between revisions

Sifkle (talk | contribs)
No edit summary
Mmat (talk | contribs)
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:danchipsupport@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php?title=Specific_Process_Knowledge/Back-end_processing/Laser_Micromachining_Tool click here]'''
{{cc-nanolab}}
<!-- Replace "http://labadviser.danchip.dtu.dk/..." wih the link to the Labadviser page-->


'''Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20https://labadviser.nanolab.dtu.dk//index.php?title=Specific_Process_Knowledge/Back-end_processing/Laser_Micromachining_Tool click here]'''
 
''All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.''


==Laser Micromachining Tool ==
==Laser Micromachining Tool ==


[[File:Laser_Micromachining_Tool_main_parts_drawing.jpg|400px|thumb|Lasertool microSTRUCT vario (3D-Micromac AG)]]
[[File:LaserTool_photo.png|400px|thumb|Lasertool microSTRUCT vario (3D-Micromac AG)]]
[[File:Inside_Camera_liveview.jpg|400px|thumb|Inside lasertool]]
[[File:Inside_Camera_liveview.jpg|400px|thumb|Inside lasertool]]


Line 13: Line 14:
The machine is located in the basement of building 346 under the cleanroom.
The machine is located in the basement of building 346 under the cleanroom.


You can find a presentation describing the laser here: [[media:140326 3DMM variostruct presentation (jesper).pdf| Lasertool microSTRUCT presentation]].
'''The machine was upgraded with a high power femtosecond laser in January 2025.'''
 
The information about the lasers below is therefor outdated. Those laser have been removed.  
 
The page will be updated very soon.  


'''The user manual(s), user APV(s), technical information and contact information can be found in LabManager:'''  
'''The user manual(s), user APV(s), technical information and contact information can be found in [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=309 LabManager]'''.
<!-- remember to remove the type of documents that are not present -->
<!-- remember to remove the type of documents that are not present -->
<!-- give the link to the equipment info page in LabManager: -->
<!-- give the link to the equipment info page in LabManager: -->
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=309]


It is equipped with 2 high power lasers :


* a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this article: [http://www.time-bandwidth.com/upload/press/weingartenlasertechnikjournalvol6issue3p51.pdf] ) with a pulse repetition rate from 200kHz up to 8000kHz.  
It is equipped with 2 high power lasers:
*: and a
 
* a 50W picosecond laser that can emit light at 3 wavelengths: 355nm, 532nm and 1064nm (Time-Bandwidth Products, Fuego/Duetto. See some details in this [http://www.time-bandwidth.com/upload/press/weingartenlasertechnikjournalvol6issue3p51.pdf article]) with a pulse repetition rate from 200kHz up to 8000kHz.  
* a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series) with a pulse repetition rate of 100kHz (currently out of use).
* a 100W nanosecond laser with a wavelength of 1064nm (IPG Laser YLP-HP series) with a pulse repetition rate of 100kHz (currently out of use).


Line 30: Line 34:


The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info [[Specific_Process_Knowledge/Pattern_Design| here]].
The laser can use Autocad DXF files for the pattern design. To create these files we recommend to use Clewin 5. See more info [[Specific_Process_Knowledge/Pattern_Design| here]].
==Process Examples==
A process example for cutting silicon grooves can be found [[/Silicon cutting and milling| <b>here</b>]].


== Technical specifications ==
== Technical specifications ==
Line 100: Line 107:
* 1064nm, F255mm: 41 W
* 1064nm, F255mm: 41 W
|}
|}
* [[media:AvgPower_1064nm_F255mm.png|Graph 1064nm, F255nm Avg. output power]]
* [[Media:AvgPower 1064nm F255mm.png|Graph 1064nm, F255nm Avg. output power]]
* [[media:AvgPower_355nm_F103mm.png|Graph 355nm, F103nm Avg. output power]]
* [[Media:AvgPower 355nm F103mm.png|Graph 355nm, F103nm Avg. output power]]


|}
|}
|-
|-


|style="background:LightGrey; color:black"|[[media:140618_AverageOutputPower_IPG.jpg|Output power@100%(laser IPG – nanosecond)]]
|style="background:LightGrey; color:black"|[[Media:140618 AverageOutputPower IPG.jpg|Output power@100%(laser IPG – nanosecond)]]
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Repetition rate : 10kHz to 100kHz (Currently non-available)
Repetition rate : 10kHz to 100kHz (Currently non-available)
Line 149: Line 156:


*[[/Laser Micromachining Tool acceptance test|Results from Laser Micromachining Tool acceptance test]]
*[[/Laser Micromachining Tool acceptance test|Results from Laser Micromachining Tool acceptance test]]
=== Results from default process [[Image:section under construction.jpg|70px]] ===
*[[../Mask making|Mask making]]


=== Laser Processing parameters ===
=== Laser Processing parameters ===
Line 252: Line 255:
| 1  
| 1  
| N/A
| N/A
| [[media:Dicing_Si_532nm_f255mm.xls|Silicon dicing green parameters]]
| [[Media:Dicing Si 532nm f255mm.xls|Silicon dicing green parameters]]
| Easily break silicon in cristal plan. Depth of the groove : 25µm  
| Easily break silicon in cristal plan. Depth of the groove : 25µm  
|- style="background:LightGray;text-align:center" valign="top"
|- style="background:LightGray;text-align:center" valign="top"
Line 266: Line 269:
| 4  
| 4  
| 50 µm
| 50 µm
| [[media:TB_1064nm_255mm_cutting_Si_Si3N4.xls|Silicon nitride cutting parameters]]
| [[Media:TB 1064nm 255mm cutting Si Si3N4.xls|Silicon nitride cutting parameters]]
| Samples can easily be removed with a soft mechanical pressure. A layer of resist can be deposited on the top without influenced the dicing. Thicker layers (oxyde or nitride) have not been tested.
| Samples can easily be removed with a soft mechanical pressure. A layer of resist can be deposited on the top without influenced the dicing. Thicker layers (oxyde or nitride) have not been tested.
|-
|-
Line 281: Line 284:
| 1  
| 1  
| N/A
| N/A
| [[media:TB_532nm_255mm_cutting_Ni_320um.xls|Cutting Ni 320µm parameters]]
| [[Media:TB 532nm 255mm cutting Ni 320um.xls|Cutting Ni 320µm parameters]]
| Cutting through only blue tape left  
| Cutting through only blue tape left  
|-
|-
Line 296: Line 299:
| 13   
| 13   
| 20 µm
| 20 µm
| [[media:TB_1064nm_255mm_cutting_pyrex_microfluidic_hole.xls|Cutting Pyrex 1000µm for microfluidic hole parameters]]
| [[Media:TB 1064nm 255mm cutting pyrex microfluidic hole.xls|Cutting Pyrex 1000µm for microfluidic hole parameters]]
| Increase/decrease the number of iteration to increase/decrease the width of the hole. [[media:pyrex_10um_hole_chanel.jpg|Microscope view of the chanel ]]
| Increase/decrease the number of iteration to increase/decrease the width of the hole. [[Media:Pyrex 10um hole chanel.jpg|Microscope view of the chanel]]
|-
|-
|- style="background:LightGray;text-align:center" valign="top"
|- style="background:LightGray;text-align:center" valign="top"
Line 311: Line 314:
| 4
| 4
| 20 µm
| 20 µm
| [[media:TB_1064nm_255mm_cutting_Pyrex_525um.xls|Cutting Pyrex 525µm parameters]]
| [[Media:TB 1064nm 255mm cutting Pyrex 525um.xls|Cutting Pyrex 525µm parameters]]
| Cutting through. Dicing circle. Can probably be optimized: 3 lines may be enough and half the iterations (tried by Azeem)
| Cutting through. Dicing circle. Can probably be optimized: 3 lines may be enough and half the iterations (tried by Azeem)
|-
|-
Line 326: Line 329:
|  
|  
|  
|  
| [[media:TB_532nm_255mm_cutting_shim_steel_50um.xls|Cutting steel 50µm]]
| [[Media:TB 532nm 255mm cutting shim steel 50um.xls|Cutting steel 50µm]]
| Cutting shrim for Injection molder.  
| Cutting shrim for Injection molder.  
|-
|-
Line 341: Line 344:
|  
|  
|  
|  
| [[media:TB_532nm_255mm_cutting_shim_steel_100um.xls|Cutting steel 100µm]]
| [[Media:TB 532nm 255mm cutting shim steel 100um.xls|Cutting steel 100µm]]
| Cutting shrim for Injection molder.  
| Cutting shrim for Injection molder.  
|-
|-
Line 356: Line 359:
|  
|  
|  
|  
| [[media:TB_532nm_255mm_cutting_shim_steel_200um.xls|Cutting steel 200µm]]
| [[Media:TB 532nm 255mm cutting shim steel 200um.xls|Cutting steel 200µm]]
| Cutting shrim for Injection molder.  
| Cutting shrim for Injection molder.  
|-
|-
Line 371: Line 374:
| 4
| 4
| 20
| 20
| [[media:Shaddowmask_al_lambda_532nm,_F_255mm.xls‎|cutting Al 400µm]]
| [[Media:Shaddowmask al lambda 532nm, F 255mm.xls|cutting Al 400µm]]
| Cutting shadowmask for Wordentec.  
| Cutting shadowmask for Wordentec.  
|-
|-
Line 386: Line 389:
| 4
| 4
| 40
| 40
| [[media:Aluminium_cut_IPG Lambda 1064nm, F 255mm.xls‎|cutting Al 600µm]]
| [[Media:Aluminium cut IPG Lambda 1064nm, F 255mm.xls|cutting Al 600µm]]
| Shadowmask.   
| Shadowmask.   
|}
|}