Jump to content

LabAdviser/Technology Research/Fabrication of Hyperbolic Metamaterials using Atomic Layer Deposition/AZO gratings: Difference between revisions

Eves (talk | contribs)
Mmat (talk | contribs)
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
====Procces flow description====
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/LabAdviser/Technology_Research/Fabrication_of_Hyperbolic_Metamaterials_using_Atomic_Layer_Deposition/AZO_gratings click here]'''
 
<i>This page is written by <b>Evgeniy Shkondin @DTU Nanolab</b> if nothing else is stated. <br>
All images and photos on this page belongs to <b>DTU Nanolab</b> and <b>DTU Electro</b> (previous DTU Fotonik).<br></i>
 
 
=Fabrication of Hyperbolic Metamaterials by ALD: AZO Gratings=
 
The fabrication and characterization described below were conducted in <b>2013-2016 by Evgeniy Shkondin, DTU Nanolab</b>.<br>
 
== Procces flow description ==


=====Si template fabrication=====
=====Si template fabrication=====
Line 8: Line 18:


=====Atomic Layer Deposition=====
=====Atomic Layer Deposition=====
The AZO coatings were made in a thermal, hot-wall ALD system (Picosun R200). The precursors were obtained from Strem Chemicals. ZnO was deposited using diethylzinc (Zn (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, DEZ) and deionized water (H<sub>2</sub>O), whereas Al doping of the ZnO was introduced by a single cycle of trimethylaluminium (Al(CH<sub>3</sub>)<sub>3</sub>, TMA) and H<sub>2</sub>O into a ZnO matrix made by 20 cycles of “DEZ +H<sub>2</sub>O”. This defines an AZO macrocycle: 20 cycles of “DEZ+H<sub>2</sub>O” and one cycle of “TMA+H<sub>2</sub>O”. The deposition temperature was kept constant at 200°C. Approximately 55 AZO macrocycles need to be deposited in order to fill the Si trench template entirely.
The AZO coatings were made in a thermal, hot-wall ALD system (Picosun R200). The precursors were obtained from Strem Chemicals. ZnO was deposited using diethylzinc (Zn (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, DEZ) and deionized water (H<sub>2</sub>O), whereas Al doping of the ZnO was introduced by a single cycle of trimethylaluminium (Al(CH<sub>3</sub>)<sub>3</sub>, TMA) and H<sub>2</sub>O into a ZnO matrix made by 20 cycles of “DEZ +H<sub>2</sub>O”. This defines an AZO macrocycle: 20 cycles of “DEZ+H<sub>2</sub>O” and one cycle of “TMA+H<sub>2</sub>O”. The deposition temperature was kept constant at 200°C. Approximately, 55 AZO macrocycles need to be deposited in order to fill the Si trench template entirely.


=====Top layer removal and selective etch of the Si template=====
=====Top layer removal and selective etch of the Si template=====