Specific Process Knowledge/Etch/RIE (Reactive Ion Etch)

From LabAdviser

Etching using the dry etch technique RIE (Reactive Ion Etch)

RIE1 (part of cluster1)
RIE2 (part of cluster2)

At Danchip we have three RIE's. Two (RIE1 and RIE2) for etching silicon based materials (silicon, silicon oxide, sillicon nitride) and one (III-V RIE) for etching III-V materials (is discussed under III-V processing). The hardware of RIE1 and RIE2 is very similar but you cannot count on that identical recipes on RIE1 and RIE2 perform exactly the same. In addition to that the main difference between RIE1 and RIE2 is the cleanness of the two equipment. In rough terms RIE1 is the clean system and the RIE2 is the dirty system. This means that in RIE2 opposed to RIE1 it is allowed have small amounts of metals exposed to the plasma. Look in the manuals for RIE1 and RIE2 to read the details for this difference (you can find the manuals in LabManager [1]).

Process information


A rough overview of the performance of PECVD thin films and some process related parameters

Purpose Deposition of dielectrica
  • Silicon oxide
  • Silicon nitride
  • Silicon oxynitride
  • PBSG (Phosphorous Boron doped Silica Glass)
  • Silicon oxide doped with Germanium
Performance Film thickness
  • ~10nm - 30µm
. Index of refraction
  • ~1.4-2.1
. Step coverage
  • In general: Not so good
  • PBSG: Floats at 1000oC
. Film quality
  • Not so dense film
  • Hydrogen will be incorporated in the films
Process parameter range Process Temperature
  • 300 oC
. Process pressure
  • ~200-900 mTorr
. Gas flows
  • SiHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _4} :0-60 sccm
  • NFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2} O:0-3000 sccm
  • NHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _3} :0-1000 sccm
  • NFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2} :0-3000 sccm
  • GeHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _4} :0-6.00 sccm
  • 5%PHFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _3} :0-99 sccm
  • 5%BFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _2} HFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle _6} :0-1000 sccm
Substrates Batch size
  • 1-3 4" wafer per run
  • 1 6" wafer per run
  • Or several smaler pieces
  • Deposition on one side of the substrate
. Substrate material allowed
  • Silicon wafers
    • with layers of silicon oxide or silicon (oxy)nitride
  • Quartz wafers
. Material allowed on the substrate
  • Aluminium
  • All metals < 5% of the substrate coverage (ONLY PECVD3!)