Specific Process Knowledge/Thin film deposition/ALD Picosun R200/TiO2 deposition using ALD

From LabAdviser
Revision as of 13:56, 28 August 2015 by Pevo (talk | contribs) (Created page with "'''Feedback to this page''': '''[mailto:labadviser@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Thi...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Feedback to this page: click here

The ALD window for titanium dioxide (TiO2) ranges from 120 oC to 350 oC.

A low temperatures between 120 oC and 150 oC an amorphous TiO2 layer is grown in the ALD, and at higher temperatures between 300 oC and 350 oC an anatase TiO2 layer is grown. At temperatures between 150 oC and 300 oC the TiO2 layer will be a mixture of both amorphous and anatase TiO2.

For Si wafers, amorphous TiO2 is best grown on wafers with native oxide, and anatase TiO2 is best grown on wafers without native oxide (removed using HF).

TiO2 standard recipe

Recipe: TiO2

Temperature: 120 oC - 350 oC

TiCl4 H2O
Nitrogen flow 150 sccm 200 sccm
Pulse time 0.1 s 0.1 s
Purge time 4.0 s 5.0 s

TiO2 deposition rates

In the graphs below the TiO2 thickness as function of the number of cycles for deposition temperatures between 150 oC and 350 oC can be seen. From the equations the number of cycles required for a certain thickess to be deposited can be calculated. All results have been obtained for Si wafers with native oxide.

Evgeniy Shkondin, DTU Danchip, April-May 2014.

TiO2 results

Some some SEM images of TiO2 deposited on a Si surface at different temperatures between 150 oC and 350 oC are shown below. Some of samples have been treated with HF (hydrofluoric acid) to remove the native oxide layer just before the ALD deposition.

XPS measurements of TiO2 deposited at 120 oC and 300 oC are shown below. From the XPS measurements it can be calculated that at temperatures below 120 oC the TiO2 layer will be contaminated with about 1-3 % chlorine molecules from the TiCl4 precursor. This can be also seen as small white dots in the SEM image of the amorphous TiO2 layers above.

XPS measurements of titanium dioxide.


Evgeniy Shkondin, DTU Danchip, 2014.

TiO2 deposition on trenches

For TiO2 deposition on trenches more information can be found here: