Specific Process Knowledge/Thin film deposition/Deposition of Aluminium: Difference between revisions
No edit summary |
|||
Line 51: | Line 51: | ||
! | ! | ||
! E-beam evaporation ([[Specific Process Knowledge/Thin film deposition/Temescal|Temescal]]) | ! E-beam evaporation ([[Specific Process Knowledge/Thin film deposition/Temescal|E-beam evaporator Temescal]] and [[Specific Process Knowledge/Thin film deposition/10-pocket e-beam evaporator|E-beam evaporator (10-pockets)]]) | ||
! E-beam evaporation ([[Specific Process Knowledge/Thin film deposition/Wordentec|Wordentec]]) | ! E-beam evaporation ([[Specific Process Knowledge/Thin film deposition/Wordentec|Wordentec]]) | ||
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Wordentec|Wordentec]]) | ! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Wordentec|Wordentec]]) | ||
Line 79: | Line 79: | ||
|-style="background:LightGrey; color:black" | |-style="background:LightGrey; color:black" | ||
! Pre-clean | ! Pre-clean | ||
|Ar ion etch | |Ar ion etch (only in E-beam evaporator Temescal) | ||
| | | | ||
| | | | ||
Line 99: | Line 99: | ||
|-style="background:LightGrey; color:black" | |-style="background:LightGrey; color:black" | ||
! Deposition rate | ! Deposition rate | ||
| | |1Å/s to 10Å/s | ||
| | |1Å/s to 15Å/s | ||
|Depending on [[/Sputter rates for Al|process parameters]], up to ~2.5 Å/s | |Depending on [[/Sputter rates for Al|process parameters]], up to ~2.5 Å/s | ||
|Depending on [[/Al sputtering in Sputter System (Lesker) |process parameters]] at least up to 0.7 Å/s | |Depending on [[/Al sputtering in Sputter System (Lesker) |process parameters]] at least up to 0.7 Å/s | ||
Line 133: | Line 133: | ||
*6x6" wafers | *6x6" wafers | ||
| | | | ||
*Up to one 8" wafer (limited uniformity on large substrates) | *Up to 3 x 4" wafers or one 6" or 8" wafer (limited uniformity on large substrates) | ||
*Many small chips | |||
|-style="background:LightGrey; color:black" | |-style="background:LightGrey; color:black" | ||
Line 149: | Line 150: | ||
Approx. 5 min plus 6 min transfer time | Approx. 5 min plus 6 min transfer time | ||
| | | | ||
Approx. 1 | Approx. 1.5 hour | ||
| | | | ||
Approx. 15 min | Approx. 15 min | ||
Line 157: | Line 158: | ||
| | | | ||
Almost any that will not outgas. See the [http://labmanager.dtu.dk/function.php?module=XcMachineaction&view=edit&MachID=511 cross-contamination sheet]. | |||
| | | | ||
Line 183: | Line 181: | ||
| | | | ||
Almost any that does not outgas. Ask if in doubt or see the [http://labmanager.dtu.dk/function.php?module=XcMachineaction&view=edit&MachID=404 cross-contamination sheet]. | |||
|-style="background:LightGrey; color:black" | |-style="background:LightGrey; color:black" | ||
!Allowed materials | !Allowed materials | ||
| | | | ||
Almost any as long as it does not outgas and no fragile structures risk dropping off into the machine. See the [http://labmanager.dtu.dk/function.php?module=XcMachineaction&view=edit&MachID=511 cross-contamination sheet]. | |||
| | | | ||
Line 231: | Line 220: | ||
* Metals | * Metals | ||
| | | | ||
Almost any that does not outgas and will not drop fragile structures into the machine. | |||
|-style="background:WhiteSmoke; color:black" | |-style="background:WhiteSmoke; color:black" |
Revision as of 13:46, 19 January 2024
Feedback to this page: click here
Unless otherwise stated, this page is written by DTU Nanolab internal
Deposition of Aluminium
Aluminium can be deposited by e-beam evaporation, by sputtering and by thermal evaporation. In the chart below you can compare the different methods on the different deposition equipment.
Sputtering of Aluminium
Aluminium may be sputter deposited in either the Wordentec, the sputter-system (Lesker), or the cluster-based sputter system ("Sputter-System Metal-Oxide(PC1)" and "Sputter-System Metal-Nitride(PC3)"). See more in the matrix below.
E-beam evaporation of Aluminium
Aluminium can be deposited by e-beam assisted evaporation in the Wordentec, Physimeca and Temescal tools.
Thermal deposition of Aluminium
In the Wordentec and the Thermal evaporator aluminium can be deposited by thermal deposition. The two instruments are compared on the following page:
Comparison of Al deposition options
E-beam evaporation (E-beam evaporator Temescal and E-beam evaporator (10-pockets)) | E-beam evaporation (Wordentec) | Sputter deposition (Wordentec) | Sputter deposition (Sputter-System (Lesker)) | Sputter deposition (Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3)) | Thermal evaporation (Wordentec) | Thermal evaporation (Thermal Evaporator) | |
---|---|---|---|---|---|---|---|
General description |
E-beam deposition of Aluminium |
E-beam deposition of Aluminium |
Sputter deposition of Aluminium |
Sputter deposition of Aluminium |
Sputter deposition of Aluminium |
Aluminum deposition onto unexposed e-beam resist |
Aluminum deposition onto unexposed e-beam resist |
Pre-clean | Ar ion etch (only in E-beam evaporator Temescal) | RF Ar clean | RF Ar clean | ||||
Layer thickness | 10Å to 1 µm* | 10Å to 1 µm* | 10Å to ~0.5µm | 10Å to ~0.5µm (very time consuming ) | 10Å to ~0.5µm | 10Å to 0.12 µm | 10Å to 1 µm* |
Deposition rate | 1Å/s to 10Å/s | 1Å/s to 15Å/s | Depending on process parameters, up to ~2.5 Å/s | Depending on process parameters at least up to 0.7 Å/s | Depending on process parameters at least up to 1.3 Å/s. See conditions here | ~1.5 Å/s to 2 Å/s | 0.5, 1, or 2 Å/s |
Batch size |
|
|
|
several small samples |
|
|
|
Pumping time from wafer load |
Approx. 20 min |
Approx. 1.5 hour |
Approx. 1.5 hour |
Approx. 10 min |
Approx. 5 min plus 6 min transfer time |
Approx. 1.5 hour |
Approx. 15 min |
Allowed substrates |
Almost any that will not outgas. See the cross-contamination sheet. |
|
|
|
|
|
Almost any that does not outgas. Ask if in doubt or see the cross-contamination sheet. |
Allowed materials |
Almost any as long as it does not outgas and no fragile structures risk dropping off into the machine. See the cross-contamination sheet. |
|
|
|
|
Almost any that does not outgas and will not drop fragile structures into the machine. | |
Comment | * Thickness above 600 nm: ask for permission
It is possible to tilt the substrate. |
* Thickness above 600 nm: ask for permission.
|
**Thickness above 120 nm: ask for permission
|
* For cumulative deposition above 600 nm please write to metal@nanolab.dtu.dk to make sure there will be enough Al for your deposition
Aluminium deposition on ZEP520A for lift-off - comparison of thermal and e-beam evaporation
This is a small study of which aluminium deposition that is best for aluminium lift-off on ZEP520A resist and a very thin layer of aluminium (~20nm). The grain size is compared for the different methods.
The conclusion was that e-beam evaporation of aluminium at 15 Å/s gave the best result.
See details of the study here.
Aluminium deposition on AZ5214 for lift-off
Negative photolithography process is recomended.
Positive photolithography process from 1,5 µm is possible especially for thin layers of metal.
The more pattern the easyer lift.
It was tried (jan09) to lift 2.5 µm Al on 4.2µ negative resist on top of 11 µm Apox SiO2 in an acetone sonic-bath. The Al deposition process was done in steps evaporating 500 nm a time with 5 min pause and pressure down to at least 2E-6.
Roughness of thermally evaporated aluminium
A study by AFM was performed to examine Al films deposited with thermal evaporation in the Wordentec. See details here.