Specific Process Knowledge/Etch/KOH Etch: Difference between revisions

From LabAdviser
Mbec (talk | contribs)
Hvje (talk | contribs)
 
(69 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:labadviser@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Etch/KOH_Etch click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Etch/KOH_Etch click here]'''


=<span style="background:#FF2800">THIS PAGE IS UNDER CONSTRUCTION</span>[[image:Under_construction.png|200px]]=
'''Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.'''
 
'''All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.'''




Line 7: Line 9:
[[Category: Etch (Wet) bath|KOH etch]]
[[Category: Etch (Wet) bath|KOH etch]]


==KOH etch - ''Anisotropic silicon etch''==
==Si etch - ''Anisotropic silicon etch''==


KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.
KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.
Line 13: Line 15:
KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si<sub>3</sub>N<sub>4</sub>- or SiO<sub>2</sub>-masking materials and the potassium contamination of the surface. '''The latter necessitates in most cases a wet post-clean ([[Specific Process Knowledge/Wafer cleaning/7-up & Piranha|'7-up']] or [[Specific Process Knowledge/Wafer cleaning/RCA|RCA-clean]]) if the wafer is to be processed further.'''
KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si<sub>3</sub>N<sub>4</sub>- or SiO<sub>2</sub>-masking materials and the potassium contamination of the surface. '''The latter necessitates in most cases a wet post-clean ([[Specific Process Knowledge/Wafer cleaning/7-up & Piranha|'7-up']] or [[Specific Process Knowledge/Wafer cleaning/RCA|RCA-clean]]) if the wafer is to be processed further.'''


At Danchip we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO<sub>2</sub>-mask - is depending on the temperature. We normally use T=80 <sup>o</sup>C but may choose to reduce this to e.g. 60 <sup>o</sup>C or 70 <sup>o</sup>C in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 <sup>o</sup>C (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch. Etching with IPA added to the KOH solution can be done in KOH fumehood.
At DTU Nanolab we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO<sub>2</sub>-mask - is depending on the temperature. We normally use T=80 <sup>o</sup>C but may choose to reduce this to e.g. 60 <sup>o</sup>C or 70 <sup>o</sup>C in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 <sup>o</sup>C (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch. Etching with IPA added to the KOH solution (250ml IPA/1000ml KOH) can be done in KOH fumehood.  
   
   
<br clear="all" />
<br clear="all" />
Line 25: Line 27:




[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=248 KOH3 info page in LabManager],
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=376 Si Etch 1: KOH info page in LabManager],
   
   
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=49 KOH2 info page in LabManager],
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=390 Si Etch 2: KOH info page in LabManager],  
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=9 KOH1 info page in LabManager],


[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=197 Fumehood KOH info page in LabManager]
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=407 Si Etch 3: KOH info page in LabManager]


==Process Information==
==Process Information==
[[/V-grooves|Results on V-grooves]]
===Quality Control (QC) for the KOH etching baths.===
{| border="1" cellspacing="2" cellpadding="2" colspan="3"
|bgcolor="#98FB98" |'''Quality Control (QC) for KOH1, KOH2 and KOH3'''
|-
|
*[http://labmanager.danchip.dtu.dk/d4Show.php?id=3203&mach=9 The QC procedure for KOH1]<br>
*[http://labmanager.danchip.dtu.dk/d4Show.php?id=1565&mach=248 The QC procedure for KOH2 and KOH3]<br>
*[http://labmanager.danchip.dtu.dk/view_binary.php?type=data&mach=9 The newest QC data for KOH1]<br>
*[http://labmanager.danchip.dtu.dk/view_binary.php?type=data&mach=49 The newest QC data for KOH2]<br>
*[http://labmanager.danchip.dtu.dk/view_binary.php?type=data&mach=248 The newest QC data for KOH3]<br>
{| {{table}}
| align="center" |
{| border="1" cellspacing="1" cellpadding="2"  align="center" style="width:200px"
! QC Recipe:
! &nbsp;
|-
| Solution
|28 wt% KOH
|-
|Temperature
|80°C
|-
|Time
|90 min
|-
|Substrate
|Si (100)
|-|-
|Masking
|No masking
|-
|}
| align="center" valign="top"|
{| border="3" cellspacing="1" cellpadding="2" align="center" style="width:500px"
!QC limits
!KOH1
!KOH 2&3
|-
|Etch rate in Si(100)
|1.3 ± 0.1 µm/min
|1.29 ± 0.06 µm/min
|-
|Roughness
| not measured
| not measured
|-
|Nonuniformity
|< 3%
|< 3%
|-
|}
|-
|}
|}


<br clear="all" />
*[[/ProcessInfo#QC|QC info for standard KOH baths]]
*[[/ProcessInfo#Mixing KOH|How to mix KOH]]
*[[/ProcessInfo#Backside protection|Backside protection]]
*[[/ProcessInfo#Theory|Crystal orientation dependency]]


==KOH etching baths==
==KOH etching baths==
Key facts for the different etch baths available at Danchip are resumed in the table:
Key facts for the different etch baths available at DTU Nanolab are resumed in the table:
<br clear="all" />
<br clear="all" />


Line 103: Line 48:


!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment  
|style="background:WhiteSmoke; color:black"|<b>KOH3</b>
|style="background:WhiteSmoke; color:black"|<b>Si Etch 01: KOH</b>
|style="background:WhiteSmoke; color:black"|<b>KOH2</b>
|style="background:WhiteSmoke; color:black"|<b>Si Etch 02: KOH</b>
|style="background:WhiteSmoke; color:black"|<b>KOH1</b>
|style="background:WhiteSmoke; color:black"|<b>Si Etch 03: KOH</b>
|style="background:WhiteSmoke; color:black"|<b>KOH Fumehood</b>
|-
|-
!style="background:silver; color:black;" align="center" width="60" rowspan="2"|Purpose  
!style="background:Silver; color:black;" align="center" width="60" rowspan="2"|Purpose  
|style="background:LightGrey; color:black"|Wet etch of Silicon
|style="background:LightGrey; color:black"|
|style="background:WhiteSmoke; color:black"|
*Etch of Silicon in 28 wt% KOH
*Etch of Silicon in 28 wt% KOH
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Line 116: Line 59:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Etch of Silicon in 28 wt% KOH  
*Etch of Silicon in 28 wt% KOH  
The bath is dedicated wafer with electroplated Nickel or otherwise dirty wafers
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Etch of Silicon in user mixed KOH
*Etch of Silicon in 28 wt% KOH
The bath is dedicated wafers with metal or otherwise dirty wafers
|-
|-
|style="background:LightGrey; color:black"|Link to safety APV and KBA
|style="background:LightGrey; color:black"|Link to safety APV and SDS
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=1906&mach=248 see APV here]
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4964&mach=376 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see KBA here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=1906&mach=49 see APV here]
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4964&mach=376 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see KBA here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=1906&mach=49 see APV here]
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4897&mach=407 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see KBA here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=2479&mach=197 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see KBA here]
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="5"|Performance
!style="background:silver; color:black" align="center" valign="center" rowspan="7"|Performance
|style="background:LightGrey; color:black"|Etch rates in crystalline silicon (100)
|style="background:LightGrey; color:black"|Etch rates in crystalline silicon (100)
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Line 146: Line 86:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*0.4 µm/min (60 °C)
*0.4 µm/min (60 °C)
*0.7 µm/min (70 °C)
*1.3 µm/min (80 °C)
*1.3 µm/min (80 °C)
Etch rates might vary due to contamination and poor controlled concentration of the KOH solution
|-
|style="background:LightGrey; color:black"|Etch rates in crystalline silicon (110)
|style="background:WhiteSmoke; color:black"|
*2.5 µm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
*2.5 µm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Somewhat lower than in the dedicated baths. Approximately 1 µm/min @ 80 °C in 28 wt%
*2.5 µm/min (80 °C)
|-
|-
|style="background:LightGrey; color:black"|Etch rates in Thermal SiO2  
|style="background:LightGrey; color:black"|Etch rates in Thermal SiO2  
Line 155: Line 101:
*Theoretical values:
*Theoretical values:
*1.2 nm/min (60 °C)  
*1.2 nm/min (60 °C)  
*6 nm/min (80 °C)
*7.5 nm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Theoretical values:
*Theoretical values:
*1.2 nm/min (60 °C)  
*1.2 nm/min (60 °C)  
*6 nm/min (80 °C)
*7.5 nm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Theoretical values:
*1.2 nm/min (60 °C)
*7.5 nm/min (80 °C)
|-
|-
|style="background:LightGrey; color:black"|Etch rates in SiN
|style="background:LightGrey; color:black"|Etch rates in other oxides
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*0.02 nm/min (80 °C)<sup>{{fn|1}}</sup>
.
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
yannickseis@nbi.ku nov. 2017 @80 °C:
*BPSG from PECVD4: 311nm in about 3 min
*Waveguide oxide from PECVD4: 320nm etched in 26 min
*TEOS oxide from furnace: 300nm etched in 11 min
jemafh@nilt 2019-Marts:
*Standard from PECVD3: selectivity 1:100 to Si
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
.
|-
|style="background:LightGrey; color:black"|Etch rates in PECVD SiN
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|See etchrates for PECVD SiN [https://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_Silicon_Nitride/Deposition_of_Silicon_Nitride_using_PECVD/PECVD3:_Low_stress_nitride_testing#DOE_made_to_find_a_good_QC_nitride_recipe_with_low_stress_and_low_KOH_etch_rate_(by_Berit_Herstrøm_@_DTU_Nanolab_2016_Marts) here]
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
|-
|-
Line 177: Line 136:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*May be high due to contamination and poor controlled concentration of the KOH solution
*May be high due to contamination and poor controlled concentration of the KOH solution
|style="background:WhiteSmoke; color:black"|
*Typical worse than KOH2 and KOH3
|-
|-
|style="background:LightGrey; color:black"|Anisotropy
|style="background:LightGrey; color:black"|Anisotropy
|style="background:WhiteSmoke; color:black"|
*The etch rate is very dependent on the crystal orientation of the silicon.
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*The etch rate is very dependent on the crystal orientation of the silicon.
*The etch rate is very dependent on the crystal orientation of the silicon.
Line 194: Line 149:
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Mixing ratios giving 28 wt% KOH solutions
*Mixing ratios giving 28 wt% KOH solutions
KOH:H<sub>2</sub>O - 500 g : 1000 ml, when using pills
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
Line 204: Line 158:
KOH:H<sub>2</sub>O - 500 g : 1000 ml, when using pills
KOH:H<sub>2</sub>O - 500 g : 1000 ml, when using pills
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
|style="background:WhiteSmoke; color:black"|
*Custom made
|-
|-
|style="background:LightGrey; color:black"|Temperature
|style="background:LightGrey; color:black"|Temperature
|style="background:WhiteSmoke; color:black"|
*Max 80 °C (standard etch)
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Max 80 °C (standard etch)
*Max 80 °C (standard etch)
Line 219: Line 169:
!style="background:silver; color:black" align="center" valign="center" rowspan="4"|Substrates
!style="background:silver; color:black" align="center" valign="center" rowspan="4"|Substrates
|style="background:LightGrey; color:black"|Batch size
|style="background:LightGrey; color:black"|Batch size
|style="background:WhiteSmoke; color:black"|
*1-25 wafers at a time
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*1-25 wafers at a time  
*1-25 wafers at a time  
Line 230: Line 178:
|style="background:LightGrey; color:black"|Size of substrate
|style="background:LightGrey; color:black"|Size of substrate
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*4” wafers
*4”-6" wafers
*6” wafers
|style="background:WhiteSmoke; color:black"|
*4” wafers
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*4” wafers
*4”-6" wafers
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*2” wafers
*2” wafers
*4” wafers
*4” wafers
*6” wafers
*Small pieces
*Small pieces
|-
|-
Line 250: Line 196:
*Silicon oxide  
*Silicon oxide  
*Silicon (oxy)nitride
*Silicon (oxy)nitride
|style="background:WhiteSmoke; color:black"|
*Silicon
*Silicon oxide
*Silicon (oxy)nitride
*Nickel
*Nickel vanadium alloys
*Titanium
*Chromium
*Gold
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*All except for Polymers
*All except for Polymers
|-
|-
|style="background:LightGrey; color:black"|Masking material
|style="background:LightGrey; color:black"|Masking material
|style="background:WhiteSmoke; color:black"|
*Stoichiometric Si3N4
*Silicon rich nitride SiN
*PECVD Si3N4
*Thermal SiO2
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Stoichiometric Si3N4  
*Stoichiometric Si3N4  
Line 287: Line 219:
<sup>{{fn|1}}</sup> Measured by Eric Jensen from DTU-Nanotech, October 2013.
<sup>{{fn|1}}</sup> Measured by Eric Jensen from DTU-Nanotech, October 2013.
<br clear="all" />
<br clear="all" />
===Definition of structures===
Due to the almost inert (111)-planes it is possible by KOH etching to realize high aspect ratio structures in sigle crytalline silicon using the (111)-planes as sidewalls. In Si(100) these sidewalls are inclined - 54.7<sup>o</sup> with respect to the (100) surface - whereas in Si(110) the sidewalls are vertical (see figures below).
<gallery caption="Anisotropic wet silicon etch: dependency on crystal orientation" widths="380px" heights="150px" perrow="2">
Image:KOH_Anisotropy.jpg|Etched profile when etching Si(100).
Image:KOH_Anisotropy(110).jpg|Etched profile when etching Si(110).
</gallery>
<br clear="all"/>
For Si(100), the relation between the width of the bottom of the etched groove (W<sub>b</sub>) and the width of the opening (W<sub>o</sub>) at the wafer surface in a groove etched to the depth l is given by:
<math>W_b = W_o - 2lcot(54.7^o) = W_o - \sqrt{2} l</math>
<br clear="all" />
===Definition of <110> alignment structures===
The etch rate dependence on the crystallographic planes can be used to determine the <110> crystal directions with high precision (better than +/- 0.05 <sup>o</sup>). A fast method for doing this, using the symmetric under-etching behavior around but not at the <110>-directions, was described by Vangbo and Bäcklund in J. Micromech. Microeng.'''6''' (1996), 279-284. High-precision control of the <110>-direction during alignment can be necessary in order to control the dimensions of KOH-etched structures (e.g. precise control of V-groove dimensions). A dedicated mask (MASK NAME) has been designed for this purpose.
<br clear="all" />
===Etch rates: Empirical formula (Seidl et al)===
The following empirical formula can be used for concentrations in the range of 10-60 wt%:
R = k<sub>0</sub> [H<sub>2</sub>O]<sup>4</sup> [KOH]<sup>0.25</sup> e<sup>-E<sub>a</sub>/kT</sup>,
where k<sub>0</sub> = 2480 µm/hr (mol/l)<sup>-4.25</sup>, E<sub>a</sub> = 0.595 eV for Si(100)
and  k<sub>0</sub> = 4500 µm/hr (mol/l)<sup>-4.25</sup>, E<sub>a</sub> = 0.60 eV for Si(110)

Latest revision as of 12:13, 11 April 2024

Feedback to this page: click here

Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.

All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.

Si etch - Anisotropic silicon etch

KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.

KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si3N4- or SiO2-masking materials and the potassium contamination of the surface. The latter necessitates in most cases a wet post-clean ('7-up' or RCA-clean) if the wafer is to be processed further.

At DTU Nanolab we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO2-mask - is depending on the temperature. We normally use T=80 oC but may choose to reduce this to e.g. 60 oC or 70 oC in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 oC (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch. Etching with IPA added to the KOH solution (250ml IPA/1000ml KOH) can be done in KOH fumehood.


The user manuals, quality control procedures and results, user APVs, technical information and contact information can be found in LabManager:


Si Etch 1: KOH info page in LabManager,

Si Etch 2: KOH info page in LabManager,

Si Etch 3: KOH info page in LabManager

Process Information

KOH etching baths

Key facts for the different etch baths available at DTU Nanolab are resumed in the table:


Equipment Si Etch 01: KOH Si Etch 02: KOH Si Etch 03: KOH
Purpose
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH

The bath is dedicated wafers with metal or otherwise dirty wafers

Link to safety APV and SDS
Performance Etch rates in crystalline silicon (100)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
Etch rates in crystalline silicon (110)
  • 2.5 µm/min (80 °C)
  • 2.5 µm/min (80 °C)
  • 2.5 µm/min (80 °C)
Etch rates in Thermal SiO2
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
Etch rates in other oxides

.

yannickseis@nbi.ku nov. 2017 @80 °C:

  • BPSG from PECVD4: 311nm in about 3 min
  • Waveguide oxide from PECVD4: 320nm etched in 26 min
  • TEOS oxide from furnace: 300nm etched in 11 min

jemafh@nilt 2019-Marts:

  • Standard from PECVD3: selectivity 1:100 to Si

.

Etch rates in PECVD SiN See etchrates for PECVD SiN here
Roughness
  • Typical: 100-600 Å
  • Typical: 100-600 Å
  • May be high due to contamination and poor controlled concentration of the KOH solution
Anisotropy
  • The etch rate is very dependent on the crystal orientation of the silicon.
  • The etch rate is very dependent on the crystal orientation of the silicon.
  • The etch rate is very dependent on the crystal orientation of the silicon.
Process parameter range Chemical solution
  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 500 g : 1000 ml, when using pills KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 500 g : 1000 ml, when using pills KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

Temperature
  • Max 80 °C (standard etch)
  • Max 80 °C
  • Max 80 °C
Substrates Batch size
  • 1-25 wafers at a time
  • 1-25 wafers at a time
  • 1-7 wafers at a time
Size of substrate
  • 4”-6" wafers
  • 4”-6" wafers
  • 2” wafers
  • 4” wafers
  • 6” wafers
  • Small pieces
Allowed materials
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • All except for Polymers
Masking material
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2

1 Measured by Eric Jensen from DTU-Nanotech, October 2013.