Specific Process Knowledge/Etch/KOH Etch: Difference between revisions

From LabAdviser
Kabi (talk | contribs)
Hvje (talk | contribs)
 
(163 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:wetchemistry@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Etch/KOH_Etch click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Etch/KOH_Etch click here]'''


'''Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.'''
'''All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.'''
[[Category: Equipment|Etch Wet KOH etch]]
[[Category: Etch (Wet) bath|KOH etch]]
==Si etch - ''Anisotropic silicon etch''==


==KOH etch - ''Anisotropic silicon etch''==
[[Image:KOH_4tommer.jpg|300x399px|thumb|KOH etch for 4" wafers. KOH1 to the left and KOH2 to the right, in between you find the BHF tank. Positioned in cleanroom 3]]
KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.
KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.


KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si<sub>3</sub>N<sub>4</sub>- or SiO<sub>2</sub>-masking materials and the potassium contamination of the surface. The latter necessitates in most cases a wet post-clean ([[Specific Process Knowledge/Wafer cleaning/7-up & Piranha|'7-up']] or [[Specific Process Knowledge/Wafer cleaning/RCA|RCA-clean]]) if the wafer is to be processed further.
KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si<sub>3</sub>N<sub>4</sub>- or SiO<sub>2</sub>-masking materials and the potassium contamination of the surface. '''The latter necessitates in most cases a wet post-clean ([[Specific Process Knowledge/Wafer cleaning/7-up & Piranha|'7-up']] or [[Specific Process Knowledge/Wafer cleaning/RCA|RCA-clean]]) if the wafer is to be processed further.'''
 
At DTU Nanolab we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO<sub>2</sub>-mask - is depending on the temperature. We normally use T=80 <sup>o</sup>C but may choose to reduce this to e.g. 60 <sup>o</sup>C or 70 <sup>o</sup>C in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 <sup>o</sup>C (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch. Etching with IPA added to the KOH solution (250ml IPA/1000ml KOH) can be done in KOH fumehood.
<br clear="all" />
 
<gallery caption="Different places to do anisotropic wet silicon etch" widths="350px" heights="250px" perrow="3">
image:KOH_BHF.JPG|Wetbench 01: Si etch, for Si etch of 4" and 6" wafers using KOH. Positioned in cleanroom D-3.
image:KOH_fumehood.JPG|Fume hood 06: Si etch, for Si etch of 4" and 6" wafers using KOH. Positioned in cleanroom D-3. This is used for wafers that are considered dirty.</gallery>
 
'''The user manuals, quality control procedures and results, user APVs, technical information and contact information can be found in LabManager:'''
<!-- remember to remove the type of documents that are not present -->
 
 
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=376 Si Etch 1: KOH info page in LabManager],
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=390 Si Etch 2: KOH info page in LabManager],


At Danchip we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO<sub>2</sub>-mask - is depending on the temperature. We normally use T=80 <sup>o</sup>C but may choose to reduce this to e.g. 60 <sup>o</sup>C or 70 <sup>o</sup>C in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 <sup>o</sup>C (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch.
[http://labmanager.dtu.dk/function.php?module=Machine&view=view&mach=407 Si Etch 3: KOH info page in LabManager]


Key facts for the different etch baths available at Danchip are resumed in the table:
==Process Information==


*[[/ProcessInfo#QC|QC info for standard KOH baths]]
*[[/ProcessInfo#Mixing KOH|How to mix KOH]]
*[[/ProcessInfo#Backside protection|Backside protection]]
*[[/ProcessInfo#Theory|Crystal orientation dependency]]
==KOH etching baths==
Key facts for the different etch baths available at DTU Nanolab are resumed in the table:
<br clear="all" />
<br clear="all" />
===KOH solutions===


{| border="2" cellspacing="0" cellpadding="4" align="left"
 
!
{| border="2" cellspacing="0" cellpadding="2"
! 28 wt% KOH
 
! 28 wt% KOH sat. with IPA
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment
|-
|style="background:WhiteSmoke; color:black"|<b>Si Etch 01: KOH</b>
|'''General description'''
|style="background:WhiteSmoke; color:black"|<b>Si Etch 02: KOH</b>
|
|style="background:WhiteSmoke; color:black"|<b>Si Etch 03: KOH</b>
:Etch of Si(100)
|
:Etch of Si(100) with boron etch-stop
|-
|-
|'''Link to safety APV and KBA'''
!style="background:Silver; color:black;" align="center" width="60" rowspan="2"|Purpose
|
|style="background:LightGrey; color:black"|
:[http://www.labmanager.danchip.dtu.dk/d4Show.php?id=1906&mach=248 see APV here]
*Etch of Silicon in 28 wt% KOH
:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see KBA here]
|style="background:WhiteSmoke; color:black"|
|
*Etch of Silicon in 28 wt% KOH
:[http://www.labmanager.danchip.dtu.dk/d4Show.php?id=1906&mach=49 see APV here]
|style="background:WhiteSmoke; color:black"|
:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see KBA here]
*Etch of Silicon in 28 wt% KOH
|style="background:WhiteSmoke; color:black"|
*Etch of Silicon in 28 wt% KOH
The bath is dedicated wafers with metal or otherwise dirty wafers
|-
|-
|'''Chemical solution'''
|style="background:LightGrey; color:black"|Link to safety APV and SDS
|
|style="background:WhiteSmoke; color:black"|
:KOH:H<sub>2</sub>O  - 500 g : 1000 ml
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4964&mach=376 see APV here]
|
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
:KOH:H<sub>2</sub>O:IPA -  500 g : 1000 ml : ?? ml
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4964&mach=376 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
|style="background:WhiteSmoke; color:black"|
*:[http://labmanager.danchip.dtu.dk/d4Show.php?id=4897&mach=407 see APV here]
*:[http://kemibrug.dk/KBA/CAS/106882/?show_KBA=1&portaldesign=1 see SDS here]
|-
|-
|'''Process temperature'''
!style="background:silver; color:black" align="center" valign="center" rowspan="7"|Performance
|
|style="background:LightGrey; color:black"|Etch rates in crystalline silicon (100)
*60 <sup>o</sup>C
|style="background:WhiteSmoke; color:black"|
*70 <sup>o</sup>C
*0.4 µm/min (60 °C)
*80 <sup>o</sup>C (standard - fast etch)
*0.7 µm/min (70 °C)
|  
*1.3 µm/min (80 °C)
:
|style="background:WhiteSmoke; color:black"|
*70 <sup>o</sup>C
*0.4 µm/min (60 °C)
*0.7 µm/min (70 °C)
*1.3 µm/min (80 °C)
|style="background:WhiteSmoke; color:black"|
*0.4 µm/min (60 °C)
*0.7 µm/min (70 °C)
*1.3 µm/min (80 °C)
|-
|-
|'''Possible masking materials'''
|style="background:LightGrey; color:black"|Etch rates in crystalline silicon (110)
|
|style="background:WhiteSmoke; color:black"|
*Stoichiometric Si<sub>3</sub>N<sub>4</sub>
*2.5 µm/min (80 °C)
*Si-rich Si<sub>3</sub>N<sub>4</sub>
|style="background:WhiteSmoke; color:black"|
*PECVD Si<sub>3</sub>N<sub>4</sub>
*2.5 µm/min (80 °C)
*Thermal SiO<sub>2</sub>
|style="background:WhiteSmoke; color:black"|
|
*2.5 µm/min (80 °C)
*Stoichiometric Si<sub>3</sub>N<sub>4</sub>
*Si-rich Si<sub>3</sub>N<sub>4</sub>
*PECVD Si<sub>3</sub>N<sub>4</sub>
*Thermal SiO<sub>2</sub>
|-
|-
|'''Etch rate in Si'''
|style="background:LightGrey; color:black"|Etch rates in Thermal SiO2
|
|style="background:WhiteSmoke; color:black"|
*~0.4 µm/min (60 <sup>o</sup>C)
*Theoretical values:
*~0.7 µm/min (70 <sup>o</sup>C)
*1.2 nm/min (60 °C)
*~1.3 µm/min (80 <sup>o</sup>C)
*7.5 nm/min (80 °C)
 
|style="background:WhiteSmoke; color:black"|
|
*Theoretical values:
*~0.2 µm/min (70 <sup>o</sup>C)
*1.2 nm/min (60 °C)  
:in p<sup>++</sup> (doping level > 5x10<sup>19</sup> cm<sup>-3</sup>)
*7.5 nm/min (80 °C)
 
|style="background:WhiteSmoke; color:black"|
*Theoretical values:
*1.2 nm/min (60 °C)  
*7.5 nm/min (80 °C)
|-
|-
|'''Etch rate in SiO<sub>2</sub>'''
|style="background:LightGrey; color:black"|Etch rates in other oxides
|
|style="background:WhiteSmoke; color:black"|
*~6nm/min (80 <sup>o</sup>C) ''theoretical value''
.
*~1.2nm/min (60 <sup>o</sup>C) ''theoretical value''
|style="background:WhiteSmoke; color:black"|
|.
yannickseis@nbi.ku nov. 2017 @80 °C:
*BPSG from PECVD4: 311nm in about 3 min
*Waveguide oxide from PECVD4: 320nm etched in 26 min
*TEOS oxide from furnace: 300nm etched in 11 min
jemafh@nilt 2019-Marts:
*Standard from PECVD3: selectivity 1:100 to Si
|style="background:WhiteSmoke; color:black"|
.
|-
|-
|'''Roughness'''
|style="background:LightGrey; color:black"|Etch rates in PECVD SiN
|
|style="background:WhiteSmoke; color:black"|
:Typical: 100-600 Å
|style="background:WhiteSmoke; color:black"|See etchrates for PECVD SiN [https://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_Silicon_Nitride/Deposition_of_Silicon_Nitride_using_PECVD/PECVD3:_Low_stress_nitride_testing#DOE_made_to_find_a_good_QC_nitride_recipe_with_low_stress_and_low_KOH_etch_rate_(by_Berit_Herstrøm_@_DTU_Nanolab_2016_Marts) here]
|
|style="background:WhiteSmoke; color:black"|
:May form hillocks (pyramidal)
 
|-
|-
|'''Batch size'''
|style="background:LightGrey; color:black"|Roughness
|
|style="background:WhiteSmoke; color:black"|
:1-25 wafers at a time
*Typical: 100-600 Å
|
|style="background:WhiteSmoke; color:black"|
:1-25 wafer at a time
*Typical: 100-600 Å
|style="background:WhiteSmoke; color:black"|
*May be high due to contamination and poor controlled concentration of the KOH solution
|-
|-
|'''Size of substrate'''
|style="background:LightGrey; color:black"|Anisotropy
|
|style="background:WhiteSmoke; color:black"|
:4" wafers
*The etch rate is very dependent on the crystal orientation of the silicon.
|
|style="background:WhiteSmoke; color:black"|
:4" wafers
*The etch rate is very dependent on the crystal orientation of the silicon.
|style="background:WhiteSmoke; color:black"|
*The etch rate is very dependent on the crystal orientation of the silicon.
|-
|-
|'''Allowed materials'''
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Process parameter range
|
|style="background:LightGrey; color:black"|Chemical solution
*Silicon
|style="background:WhiteSmoke; color:black"|
*Silicon Oxide
*Mixing ratios giving 28 wt% KOH solutions
*Silicon Nitride
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
*Silicon Oxynitride
|style="background:WhiteSmoke; color:black"|
|
*Mixing ratios giving 28 wt% KOH solutions
*Silicon
KOH:H<sub>2</sub>O - 500 g : 1000 ml, when using pills
*Silicon Oxide
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
*Silicon Nitride
|style="background:WhiteSmoke; color:black"|
*Silicon Oxynitride
*Mixing ratios giving 28 wt% KOH solutions
KOH:H<sub>2</sub>O - 500 g : 1000 ml, when using pills
KOH:H<sub>2</sub>O - 1000 ml: 1200 ml, when using premixed 50% KOH solution
|-
|style="background:LightGrey; color:black"|Temperature
|style="background:WhiteSmoke; color:black"|
*Max 80 °C (standard etch)
|style="background:WhiteSmoke; color:black"|
*Max 80 °C
|style="background:WhiteSmoke; color:black"|
*Max 80 °C
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="4"|Substrates
|style="background:LightGrey; color:black"|Batch size
|style="background:WhiteSmoke; color:black"|
*1-25 wafers at a time
|style="background:WhiteSmoke; color:black"|
*1-25 wafers at a time
|style="background:WhiteSmoke; color:black"|
*1-7 wafers at a time
|-
|-
|}
|style="background:LightGrey; color:black"|Size of substrate
 
|style="background:WhiteSmoke; color:black"|
<br clear="all" />
*4”-6" wafers
 
|style="background:WhiteSmoke; color:black"|
 
*4”-6" wafers
 
|style="background:WhiteSmoke; color:black"|
<br clear="all" />
*2” wafers
===KOH solutions===
*4” wafers
 
*6” wafers
{| border="2" cellspacing="0" cellpadding="2"
*Small pieces
 
!colspan="2" border="none" style="background:silver; color:black;" align="center"|Equipment
|style="background:WhiteSmoke; color:black"|<b>KOH3</b>
|style="background:WhiteSmoke; color:black"|<b>KOH2</b>
|-
|-
!style="background:silver; color:black;" align="center" width="60"|Purpose
|style="background:LightGrey; color:black"|Allowed materials
|style="background:LightGrey; color:black"|Wet etch of
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Silicon
*Silicon
*Silicon oxide
*Silicon oxide  
*Silicon (oxy)nitride
*Silicon (oxy)nitride
*Resist
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Silicon
*Silicon
*Silicon oxide
*Silicon oxide  
*Silicon (oxy)nitride
*Silicon (oxy)nitride
*Resist and other polymers
|style="background:WhiteSmoke; color:black"|
*All except for Polymers
|-
|-
!style="background:silver; color:black" align="center" valign="center" rowspan="2"|Performance
|style="background:LightGrey; color:black"|Masking material
|style="background:LightGrey; color:black"|Etch rates
|style="background:WhiteSmoke; color:black"|
*Stoichiometric Si3N4
*Silicon rich nitride SiN
*PECVD Si3N4
*Thermal SiO2
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Silicon: ~0.04-0.8 µm/min
*Stoichiometric Si3N4
*Silicon oxide: ~0.02-0.15 µm/min
*Silicon rich nitride SiN
*Silicon (oxy)nitride: ~0.02-? µm/min
*PECVD Si3N4
*Thermal SiO2
|style="background:WhiteSmoke; color:black"|
|style="background:WhiteSmoke; color:black"|
*Silicon: ~0.04-0.8 µm/min
*Stoichiometric Si3N4
*Silicon oxide: ~0.02-0.15 µm/min
*Silicon rich nitride SiN
*Silicon (oxy)nitride: ~0.02-? µm/min
*PECVD Si3N4
*Thermal SiO2
|-
|-
 
|}
 
<sup>{{fn|1}}</sup> Measured by Eric Jensen from DTU-Nanotech, October 2013.
<br clear="all" />
<br clear="all" />
===Definition of structures===
Due to the almost inert (111)-planes it is possible by KOH etching to realize high aspect ratio structures in sigle crytalline silicon using the (111)-planes as sidewalls. In Si(100) these sidewalls are inclined - 54.7<sup>o</sup> with respect to the (100) surface - whereas in Si(110) the sidewalls are vertical (see figures below).
[[Image:KOH_Anisotropy.jpg|left|380px|thumb|Si(100)]]
[[Image:KOH_Anisotropy(110).jpg|380px|thumb|Si(110)]]
<br clear="all"/>
For Si(100), the relation between the width of the bottom of the etched groove (W<sub>b</sub>) and the width of the opening (W<sub>o</sub>) at the wafer surface in a groove etched to the depth l is given by:
<math>W_b = W_o - 2lcot(54.7^o) = W_o - \sqrt{2} l</math>
<br clear="all" />
===Definition of <110> alignment structures===
The etch rate dependence on the crystallographic planes can be used to determine the <110> crystal directions with high precision (better than +/- 0.05 <sup>o</sup>). A fast method for doing this, using the symmetric under-etching behavior around but not at the <110>-directions, was described by Vangbo and Bäcklund in J. Micromech. Microeng.'''6''' (1996), 279-284. High-precision control of the <110>-direction during alignment can be necessary in order to control the dimensions of KOH-etched structures (e.g. precise control of V-groove dimensions). A dedicated mask (MASK NAME) has been designed for this purpose.
<br clear="all" />
===Etch rates: Empirical formula (Seidl et al)===
The following empirical formula can be used for concentrations in the range of 10-60 wt%:
R = k<sub>0</sub> [H<sub>2</sub>O]<sup>4</sup> [KOH]<sup>0.25</sup> e<sup>-E<sub>a</sub>/kT</sup>,
where k<sub>0</sub> = 2480 µm/hr (mol/l)<sup>-4.25</sup>, E<sub>a</sub> = 0.595 eV for Si(100)
and  k<sub>0</sub> = 4500 µm/hr (mol/l)<sup>-4.25</sup>, E<sub>a</sub> = 0.60 eV for Si(110)

Latest revision as of 12:13, 11 April 2024

Feedback to this page: click here

Unless anything else is stated, everything on this page, text and pictures are made by DTU Nanolab.

All links to Kemibrug (SDS) and Labmanager Including APV and QC requires login.

Si etch - Anisotropic silicon etch

KOH belongs to the family of anisotropic Si-etchants based on aqueous alkaline solutions. The anisotropy stems from the different etch rates in different crystal directions. The {111}-planes are almost inert whereas the etch rates of e.g. {100}- and {110}-planes are several orders of magnitude faster.

KOH-etching is a highly versatile and cheap way to realize micro mechanical structures if you can live with the necessary Si3N4- or SiO2-masking materials and the potassium contamination of the surface. The latter necessitates in most cases a wet post-clean ('7-up' or RCA-clean) if the wafer is to be processed further.

At DTU Nanolab we use as a standard a 28 wt% KOH. The etch rate - and the selectivity towards a SiO2-mask - is depending on the temperature. We normally use T=80 oC but may choose to reduce this to e.g. 60 oC or 70 oC in case of a high-precision timed etch (e.g. defining a thin membrane). In some cases we recommend to saturate the standard 28 wt% KOH with IPA with an etch temperature at T=70 oC (reduce evaporation of IPA). One example is for boron etch-stop, where the selectivity towards the boron-doped silicon is improved compared to the standard etch. Etching with IPA added to the KOH solution (250ml IPA/1000ml KOH) can be done in KOH fumehood.


The user manuals, quality control procedures and results, user APVs, technical information and contact information can be found in LabManager:


Si Etch 1: KOH info page in LabManager,

Si Etch 2: KOH info page in LabManager,

Si Etch 3: KOH info page in LabManager

Process Information

KOH etching baths

Key facts for the different etch baths available at DTU Nanolab are resumed in the table:


Equipment Si Etch 01: KOH Si Etch 02: KOH Si Etch 03: KOH
Purpose
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH
  • Etch of Silicon in 28 wt% KOH

The bath is dedicated wafers with metal or otherwise dirty wafers

Link to safety APV and SDS
Performance Etch rates in crystalline silicon (100)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
  • 0.4 µm/min (60 °C)
  • 0.7 µm/min (70 °C)
  • 1.3 µm/min (80 °C)
Etch rates in crystalline silicon (110)
  • 2.5 µm/min (80 °C)
  • 2.5 µm/min (80 °C)
  • 2.5 µm/min (80 °C)
Etch rates in Thermal SiO2
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
  • Theoretical values:
  • 1.2 nm/min (60 °C)
  • 7.5 nm/min (80 °C)
Etch rates in other oxides

.

yannickseis@nbi.ku nov. 2017 @80 °C:

  • BPSG from PECVD4: 311nm in about 3 min
  • Waveguide oxide from PECVD4: 320nm etched in 26 min
  • TEOS oxide from furnace: 300nm etched in 11 min

jemafh@nilt 2019-Marts:

  • Standard from PECVD3: selectivity 1:100 to Si

.

Etch rates in PECVD SiN See etchrates for PECVD SiN here
Roughness
  • Typical: 100-600 Å
  • Typical: 100-600 Å
  • May be high due to contamination and poor controlled concentration of the KOH solution
Anisotropy
  • The etch rate is very dependent on the crystal orientation of the silicon.
  • The etch rate is very dependent on the crystal orientation of the silicon.
  • The etch rate is very dependent on the crystal orientation of the silicon.
Process parameter range Chemical solution
  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 500 g : 1000 ml, when using pills KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

  • Mixing ratios giving 28 wt% KOH solutions

KOH:H2O - 500 g : 1000 ml, when using pills KOH:H2O - 1000 ml: 1200 ml, when using premixed 50% KOH solution

Temperature
  • Max 80 °C (standard etch)
  • Max 80 °C
  • Max 80 °C
Substrates Batch size
  • 1-25 wafers at a time
  • 1-25 wafers at a time
  • 1-7 wafers at a time
Size of substrate
  • 4”-6" wafers
  • 4”-6" wafers
  • 2” wafers
  • 4” wafers
  • 6” wafers
  • Small pieces
Allowed materials
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • All except for Polymers
Masking material
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2
  • Stoichiometric Si3N4
  • Silicon rich nitride SiN
  • PECVD Si3N4
  • Thermal SiO2

1 Measured by Eric Jensen from DTU-Nanotech, October 2013.