Specific Process Knowledge/Lithography/Baking: Difference between revisions

From LabAdviser
Taran (talk | contribs)
Jehem (talk | contribs)
No edit summary
 
(163 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:photolith@danchip.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/Baking click here]'''
{{cc-nanolab}}
 
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Lithography/Baking click here]'''
 
[[Category: Equipment|baking]]
[[Category: Lithography|Baking]]
 
__TOC__


=Comparing baking methods=
=Comparing baking methods=


{|border="1" cellspacing="1" cellpadding="3" style="text-align:left;"  
{|border="1" cellspacing="1" cellpadding="10" style="text-align:left;"  
|-
|-


Line 9: Line 16:
|-style="background:silver; color:black"
|-style="background:silver; color:black"
!
!
![[Specific_Process_Knowledge/Lithography/Baking#Hotplate:_90-110C|Hotplate: 90-110C]]
![[Specific_Process_Knowledge/Lithography/Baking#Small benchtop hotplates|Spray coater hotplate]]
![[Specific_Process_Knowledge/Lithography/Baking#Hotplate 1 (SU8) and Hotplate 2 (SU8)|Hotplate 1 (SU8) and 2]]
![[Specific_Process_Knowledge/Lithography/Baking#SU-8 hotplates 1, 2 & 3| SU-8 hotplates 1, 2 & 3]]
![[Specific_Process_Knowledge/Lithography/Baking#Fume_hood_hotplates|Fume hood hotplates]]
![[Specific Process Knowledge/Lithography/Baking#Small_benchtop_hotplates|Small benchtop hotplates]]
![[Specific_Process_Knowledge/Lithography/Baking#Oven 90C|Oven 90C]]
![[Specific Process Knowledge/Lithography/Baking#Gamma_hotplates|Gamma hotplates]]
![[Specific_Process_Knowledge/Lithography/Baking#Oven: 120C - 250C|Oven: 120C - 250C]]
![[Specific_Process_Knowledge/Lithography/Baking#Oven: 110C - 250C|Oven: 110C - 250C]]
![[Specific Process Knowledge/Lithography/Pretreatment#Oven 250C|Oven 250C]]
![[Specific Process Knowledge/Lithography/Baking#Oven_250C|Oven 250C]]
|-
|-


Line 21: Line 28:
!Purpose
!Purpose
|
|
Programmable contact bake
Adjustable temperature, contact bake
*Soft bake
*Soft bake
*PEB
*PEB
*Hard bake
|
|
Programmable, ramped contact bake
Programmable, ramped contact bake
Line 29: Line 37:
*PEB of SU-8
*PEB of SU-8
|
|
Manual contact bake
Hotplate: 90-110C:<br />
Programmable, contact bake
*Soft bake
*PEB
 
 
Labspin hotplates:<br />
Adjustable temperature, contact bake
*Soft bake
*Soft bake
*PEB
*Hard bake
|
|
Manual convection bake
Recipe dependent temperature, contact or proximity bake
*Soft bake
*Soft bake
*PEB
*Hard bake
|
|
Manual convection bake
Manual convection bake
*Hard bake
*Hard bake
*Post-exposure bake
|
|
Manual convection bake
Manual convection bake
*Dehydration
*Dehydration
*'''NO resist!'''
|-
|-


Line 46: Line 67:
!Temperature
!Temperature
|
|
Maximum 120°C
Maximum 180°C
 
Temperature with top-plate: Actual surface temperature = 0.9 * display value
|
|
Maximum 250°C
Maximum 110°C
|
|
Maximum 300°C
Hotplate: 90-110C:<br />
*Maximum 120°C
*Return to 90°C after use


Maximum temperature may be limited on the individual hotplate
 
Labspin hotplates:<br />
*Maximum temperature is hotplate dependent
*Temperature with top-plate: Actual surface temperature = 0.9 * display value
|
|
Fixed at 90°C
Fixed at various recipe dependent temperatures
|
|
120 - 250°C
110 - 250°C


Return to 120°C after use
Return to 110°C after use
|
|
Fixed at 250°C
Fixed at 250°C
Line 67: Line 95:
!Substrate size
!Substrate size
|
|
* 50 mm wafers
* Pieces
* 100 mm wafers
* 50 mm wafer
* 150 mm wafers
* 100 mm wafer
* 150 mm wafer
* 200 mm wafer
|
|
* pieces
* pieces
* 50 mm wafers
* 50 mm wafers
* 100 mm wafers
* 100 mm wafers
* 150 mm wafers
* 150 mm wafer
* 200 mm wafers
* 200 mm wafer
|
|
* pieces
* pieces (only Labspin hotplates)
* 50 mm wafers
* 50 mm wafers
* 100 mm wafers
* 100 mm wafers
* 150 mm wafers
* 150 mm wafer
* 200 mm wafer
|
|
* 100 mm wafers
* 100 mm wafers
Line 95: Line 126:
!Allowed materials
!Allowed materials
|
|
Silicon, glass, and polymer substrates
All substrates


Film or pattern of all types
Film or pattern of all types
Line 103: Line 134:
Film or pattern of all types except type IV
Film or pattern of all types except type IV
|
|
Respect the allowed materials on the associated spin coater
Hotplate dependent.
 
(All substrates and film or pattern of all types, unless otherwise noted on the hotplate)
|
|
Silicon, glass, and polymer substrates
Silicon and glass substrates
 
Film or pattern of all types
|
|
Silicon, glass, and polymer substrates
Silicon, glass, and high Tg polymer substrates


Film or pattern of all types
Film or pattern of all types
Line 115: Line 146:
Silicon, glass, and high Tg polymer substrates
Silicon, glass, and high Tg polymer substrates


Film or pattern of all types except resist
Film or pattern of all types except resist|
|-
|-
|-style="background:WhiteSmoke; color:black"
|-style="background:WhiteSmoke; color:black"
!Restrictions
!Restrictions <br> (Not allowed)
|
|
|III-V, copper, steel substrates
|III-V, copper, steel substrates


Pb, Te films
Pb, Te films
|III-V substrates unless specifically stated
|
Hotplate dependent. Any restrictions will be noted on the hotplate.
|
|III-V, low Tg polymer, copper, steel substrates
|III-V, low Tg polymer, copper, steel substrates
 
Resist is not allowed
|-
 
 
|-style="background:WhiteSmoke; color:black"
|- valign="top"
!QC<br>'''- requires login'''
|
https://labmanager.dtu.dk/view_binary.php?type=data&mach=293
 
|
Hotplate 1:<br /> https://labmanager.dtu.dk/view_binary.php?type=data&mach=122
 
Hotplate 2:<br /> https://labmanager.dtu.dk/view_binary.php?type=data&mach=124
 
Hotplate 3:<br /> https://labmanager.dtu.dk/view_binary.php?type=data&mach=453
 
|
Hotplate: 90-110C:<br /> https://labmanager.dtu.dk/view_binary.php?type=data&mach=336


Respect the restrictions on the associated spin coater
Spin coater: Labspin 02:<br />https://labmanager.dtu.dk/view_binary.php?type=data&mach=362
|III-V substrates
 
Spin coater: Labspin 03:<br />https://labmanager.dtu.dk/view_binary.php?type=data&mach=387
 
|
Spincoater: Gamma ebeam & UV:<br />  http://labmanager.dtu.dk/view_binary.php?fileId=4431
 
Spincoater: Gamma UV:<br />  http://labmanager.dtu.dk/view_binary.php?fileId=4432
 
Developer: TMAH UV-lithography:<br /> http://labmanager.dtu.dk/view_binary.php?fileId=4434
 
Spincoater: Süss stepper:<br /> http://labmanager.dtu.dk/view_binary.php?fileId=4433
 
Developer: Stepper:<br /> http://labmanager.dtu.dk/view_binary.php?fileId=4435
 
 
|
 
|


Pb, Te films
|III-V, copper, steel substrates
|Resist is not allowed
|-
|-
|}
|}


<br clear="all" />
<br clear="all" />
Line 139: Line 211:


==Hotplate: 90-110C==   
==Hotplate: 90-110C==   
[[Image:Hotplate90-110C in C-1.jpg|300x300px|thumb|Location of Hotplate: 90-110C in C-1]]
[[Image:Hotplate90-110C in C-1.jpg|300x300px|thumb|Hotplate: 90-110C located in C-1]]
Hotplate: 90-110C is used for baking of 2" - 6" wafers.
Hotplate: 90-110C is used for baking of 2" - 6" wafers. Do not exceed 120°C.


'''The user manual, and contact information can be found in LabManager: [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=336 Hotplate: 90-110C]'''
 
The user manual, and contact information can be found in LabManager:
 
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=336 Hotplate: 90-110C] - '''requires login'''


<br clear="all" />
<br clear="all" />


==Hotplate 1 (SU8) and Hotplate 2 (SU8)==
==SU-8 hotplates 1, 2 & 3==
[[Image:SU-8hotplates.jpg|300x300px|thumb|Hotplate 1 (SU8) and Hotplate 2 (SU8) situated in C-1]]
[[Image:SU-8hotplates.jpg|300x300px|thumb|Hotplate 1 (SU8) and Hotplate 2 (SU8) situated in C-1]]
We have two dedicated SU-8 hotplates in C-1.
We have three dedicated SU-8 hotplates in C-1 and E-4.


Users can control the ramp-time, the baking temperature, and the baking time.
Users can control the ramp-time, the baking temperature, and the baking time.
In order to avoid thermal curing of SU-8 residues on the hotplates, they are temperature limited to 180°C.


'''The user manual, and contact information can be found in LabManager: [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=122 Hotplate 1 (SU8)] [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=124 Hotplate 2 (SU8)]'''
 
The user manual, and contact information can be found in LabManager:  
 
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=122 Hotplate 1 (SU8)] - '''requires login'''
 
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=124 Hotplate 2 (SU8)] - '''requires login'''
 
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=453 Hotplate 3 (SU8)] - '''requires login'''
<br clear="all" />
<br clear="all" />


==Fume hood hotplates==   
==Small benchtop hotplates==   
This section is under construction [[Image:section under construction.jpg|70px]]
Model: Präzitherm PZ 28-2.
 
Contact bake only. Maximum temperature is hotplate dependent.
 
Most of these hotplates have been fitted with a top-plate in order to protect the original hotplate surface. With the top-plate, the set point of the controller must be adjusted in order to achieve the correct temperature during the bake:


Variable temperature hotplate mostly used for baking of single wafers as a soft baking step after a spin coating of photoresist.
'''Actual surface temperature = 0.9 * display value'''
<br clear="all" />


<gallery caption="Fumehood hotplates" widths="220px" heights="225px" perrow="4">  
<div align="right">
image:FumehoodHotplate in C-1.jpg|Fume hood hotplate for '''[[Specific_Process_Knowledge/Lithography/Coaters#Manual_Spinner_.28Polymers.29|Manual Spinner (Polymers)]]''' located in the fume hood in C-1. Limited to 300°C.
<gallery widths="320px" heights="240px">
image:FumehoodHotplate in E-5.jpg|Fume hood hotplate for [[Specific_Process_Knowledge/Lithography/Coaters#Manual_Spinner_1|'''Manual Spinner 1''']] located in the fume hood in E-5. Limited to 210°C.
File:Benchtop C1.jpg|Benchtop hotplate for Spray coater located in C-1
image:FumehoodHotplate Si in A-5.jpg|Fume hood hotplate (Si) for [[Specific_Process_Knowledge/Lithography/Coaters#Spin_coater:_Manual_Labspin|'''Spin coater: Manual Labspin''']] located in the fume hood in A-5. Limited to 220°C.
File:Labspin_2.JPG|Benchtop hotplates for Labspins in E-5
image:FumehoodHotplate III-V in A-5.jpg|Fume hood hotplate (III-V) for [[Specific_Process_Knowledge/Lithography/Coaters#Spin_coater:_Manual_Labspin|'''Spin coater: Manual Labspin''']] located in the fume hood in A-5. Right: High temperature; limited to 280°C. Left: Low temperature; limited to 125°C.
</gallery>
</gallery>
</div>
<br clear="all" />
<br clear="all" />


= Ovens =
==Gamma hotplates== 
[[Image:HMDS gammaUV.jpg|300x300px|thumb|Hotplate modules in Spin Coater: Gamma UV.]]
Hotplate temperatures are recipe dependent.


==Oven 90C==
'''Information about the Süss MicroTec Gamma tools can be found in labadviser:'''
[[Image:Oven_90_degrees_cr3.jpg|300x300px|thumb|Oven 90C is situated in C-1]]
*[http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/Coaters#Spin_Coater:_Gamma_UV Spin Coater: Gamma UV]
The oven is mostly used for baking of several wafers at a time at 90 °C as a soft baking step after a spin coating of photoresist. For 1.5µm resist the baking time is 30 min. For most of the other resist thicknesses it is also 30 min.
*[http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/Coaters#Spin_Coater:_Gamma_E-beam_and_UV Spin Coater: Gamma e-beam & UV]
*[http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/Development#Developer_TMAH_UV-lithography Developer TMAH UV-lithography]
*[http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/DUVStepperLithography#S.C3.9CSS_Spinner-Stepper Spin Coater: Süss Stepper]
*[http://labadviser.danchip.dtu.dk/index.php/Specific_Process_Knowledge/Lithography/DUVStepperLithography#Developer_TMAH_Stepper Developer: TMAH Stepper]


'''The user manual, and contact information can be found in LabManager: [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=118 Oven 90C]'''
<br clear="all" />
<br clear="all" />


==Oven: 120C - 250C==
= Ovens =
[[Image:Oven120C-250C in C-1.jpg|300x300px|thumb|Oven: 120C - 250C is Situated in C-1]]
 
==Oven: 110C - 250C==
[[Image:Oven120C-250C in C-1.jpg|300x300px|thumb|Oven: 110C - 250C situated in C-1]]
Variable temperature convection oven mostly used for baking of wafers as a hard baking step after development of photoresist.  
Variable temperature convection oven mostly used for baking of wafers as a hard baking step after development of photoresist.  


The set-point can be varied, but should always be returned to 120°C after use.
The set-point can be varied, but should always be returned to 110°C after use.
 
 
The user manual, and contact information can be found in LabManager:


'''The user manual, and contact information can be found in LabManager: [http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=119 Oven: 120C - 250C]'''
[http://labmanager.danchip.dtu.dk/function.php?module=Machine&view=view&mach=119 Oven: 110C - 250C] - '''requires login'''
<br clear="all" />
<br clear="all" />


==Oven 250C for pretreatment==
{{:Specific Process Knowledge/Lithography/Pretreatment/Oven_250C}}
[[Image:Oven_250_degrees_for_pretreatment_cr3.jpg|300x300px|thumb|Oven 250C for pretreatment is situated in C-1]]
See [[Specific_Process_Knowledge/Lithography/Pretreatment#Oven_250C|Oven 250C]]
<br clear="all" />

Latest revision as of 13:50, 10 May 2023

The contents on this page, including all images and pictures, was created by DTU Nanolab staff unless otherwise stated.

Feedback to this page: click here

Comparing baking methods

Spray coater hotplate SU-8 hotplates 1, 2 & 3 Small benchtop hotplates Gamma hotplates Oven: 110C - 250C Oven 250C
Purpose

Adjustable temperature, contact bake

  • Soft bake
  • PEB
  • Hard bake

Programmable, ramped contact bake

  • Soft bake of SU-8
  • PEB of SU-8

Hotplate: 90-110C:
Programmable, contact bake

  • Soft bake
  • PEB


Labspin hotplates:
Adjustable temperature, contact bake

  • Soft bake
  • PEB
  • Hard bake

Recipe dependent temperature, contact or proximity bake

  • Soft bake
  • PEB
  • Hard bake

Manual convection bake

  • Hard bake
  • Post-exposure bake

Manual convection bake

  • Dehydration
  • NO resist!
Temperature

Maximum 180°C

Temperature with top-plate: Actual surface temperature = 0.9 * display value

Maximum 110°C

Hotplate: 90-110C:

  • Maximum 120°C
  • Return to 90°C after use


Labspin hotplates:

  • Maximum temperature is hotplate dependent
  • Temperature with top-plate: Actual surface temperature = 0.9 * display value

Fixed at various recipe dependent temperatures

110 - 250°C

Return to 110°C after use

Fixed at 250°C

Substrate size
  • Pieces
  • 50 mm wafer
  • 100 mm wafer
  • 150 mm wafer
  • 200 mm wafer
  • pieces
  • 50 mm wafers
  • 100 mm wafers
  • 150 mm wafer
  • 200 mm wafer
  • pieces (only Labspin hotplates)
  • 50 mm wafers
  • 100 mm wafers
  • 150 mm wafer
  • 200 mm wafer
  • 100 mm wafers
  • 150 mm wafers
  • 100 mm wafers
  • 150 mm wafers
  • 100 mm wafers
  • 150 mm wafers
Allowed materials

All substrates

Film or pattern of all types

Silicon, glass, and polymer substrates

Film or pattern of all types except type IV

Hotplate dependent.

(All substrates and film or pattern of all types, unless otherwise noted on the hotplate)

Silicon and glass substrates

Silicon, glass, and high Tg polymer substrates

Film or pattern of all types

Silicon, glass, and high Tg polymer substrates

Film or pattern of all types except resist|

Restrictions
(Not allowed)
III-V, copper, steel substrates

Pb, Te films

Hotplate dependent. Any restrictions will be noted on the hotplate.

III-V, low Tg polymer, copper, steel substrates III-V, low Tg polymer, copper, steel substrates

Resist is not allowed

QC
- requires login

https://labmanager.dtu.dk/view_binary.php?type=data&mach=293

Hotplate 1:
https://labmanager.dtu.dk/view_binary.php?type=data&mach=122

Hotplate 2:
https://labmanager.dtu.dk/view_binary.php?type=data&mach=124

Hotplate 3:
https://labmanager.dtu.dk/view_binary.php?type=data&mach=453

Hotplate: 90-110C:
https://labmanager.dtu.dk/view_binary.php?type=data&mach=336

Spin coater: Labspin 02:
https://labmanager.dtu.dk/view_binary.php?type=data&mach=362

Spin coater: Labspin 03:
https://labmanager.dtu.dk/view_binary.php?type=data&mach=387

Spincoater: Gamma ebeam & UV:
http://labmanager.dtu.dk/view_binary.php?fileId=4431

Spincoater: Gamma UV:
http://labmanager.dtu.dk/view_binary.php?fileId=4432

Developer: TMAH UV-lithography:
http://labmanager.dtu.dk/view_binary.php?fileId=4434

Spincoater: Süss stepper:
http://labmanager.dtu.dk/view_binary.php?fileId=4433

Developer: Stepper:
http://labmanager.dtu.dk/view_binary.php?fileId=4435




Hotplates

Hotplate: 90-110C

Hotplate: 90-110C located in C-1

Hotplate: 90-110C is used for baking of 2" - 6" wafers. Do not exceed 120°C.


The user manual, and contact information can be found in LabManager:

Hotplate: 90-110C - requires login


SU-8 hotplates 1, 2 & 3

Hotplate 1 (SU8) and Hotplate 2 (SU8) situated in C-1

We have three dedicated SU-8 hotplates in C-1 and E-4.

Users can control the ramp-time, the baking temperature, and the baking time. In order to avoid thermal curing of SU-8 residues on the hotplates, they are temperature limited to 180°C.


The user manual, and contact information can be found in LabManager:

Hotplate 1 (SU8) - requires login

Hotplate 2 (SU8) - requires login

Hotplate 3 (SU8) - requires login

Small benchtop hotplates

Model: Präzitherm PZ 28-2.

Contact bake only. Maximum temperature is hotplate dependent.

Most of these hotplates have been fitted with a top-plate in order to protect the original hotplate surface. With the top-plate, the set point of the controller must be adjusted in order to achieve the correct temperature during the bake:

Actual surface temperature = 0.9 * display value


Gamma hotplates

Hotplate modules in Spin Coater: Gamma UV.

Hotplate temperatures are recipe dependent.

Information about the Süss MicroTec Gamma tools can be found in labadviser:


Ovens

Oven: 110C - 250C

Oven: 110C - 250C situated in C-1

Variable temperature convection oven mostly used for baking of wafers as a hard baking step after development of photoresist.

The set-point can be varied, but should always be returned to 110°C after use.


The user manual, and contact information can be found in LabManager:

Oven: 110C - 250C - requires login

Oven 250C

Oven 250C for pretreatment in Cx-1

The oven is typically used for dehydration pretreatment, of Si and glass substrates, to promote the resist adhesion. We recommend placing the wafers in a metal carrier in the oven for at least for 4 hours, or overnight, and spin coat resist on them as soon as possible after removing them from the oven.


The user manual, and contact information can be found in LabManager:

Oven 250C - requires login