Specific Process Knowledge/Characterization/XRD: Difference between revisions

From LabAdviser
Jump to navigation Jump to search
Line 1: Line 1:
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/XRD click here]'''
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php/Specific_Process_Knowledge/Characterization/XRD click here]'''


=XRD at Nanolab=
=XRD at DTU Nanolab=
We have two X-ray diffraction setups in building 346:
We have two X-ray diffraction setups in building 346:
*The [[/XRD_SmartLab|XRD SmartLab]] primarily for thin film analysis inside the cleanroom.
*The [[/XRD_SmartLab|XRD SmartLab]] primarily for thin film analysis inside the cleanroom.

Revision as of 18:36, 11 September 2022

Feedback to this page: click here

XRD at DTU Nanolab

We have two X-ray diffraction setups in building 346:

  • The XRD SmartLab primarily for thin film analysis inside the cleanroom.
  • The XRD Powder for phase analysis of powders outside the cleanroom.

Data analysis

For data analysis, we recommend using Rigaku SmartLab Studio for both thinfilms and basic powder analysis. If more advanced powder analysis is needed a remote desktop with a licens for the Malvern Panalytical software, HighScore is available.

Comparison of the XRDs at Nanolab

Equipment XRD SmartLab XRD Powder
Purpose Crystal structure analysis and thin film thickness measurement
  • Phase ID
  • Crystal Size
  • Crystallinity
  • Quality and degree of orientation
  • 3D orientation
  • Latice strain
  • Composition
  • Twist
  • 3D lattice constant
  • Thickness
  • Roughness
  • Density
  • Phase ID
  • Crystal Size
  • Crystallinity
X-ray generator

Maximum rated output

3 kW

600 W

Rated tube voltage

20 to 45 kV

40 kV

Rated tube current

2 to 60 mA

15 mA

Type

Sealed tube

Sealed tube

Target

Cu

Cu

Focus size

0.4 mm x 8 mm (Line/Point)

0.4 mm x 12 mm (Line)

Goniometer

Scanning mode

incident / receiver coupled or independent

incident / receiver coupled

Goniomenter radius

300 mm

145 mm

Minimum step size

0.0001° (0.36")

0.001° (3.6")

Sample stage

  • χ:-5~+95°
  • φ:0~360°
  • Z:-4~+1 mm
  • X,Y:±50 mm for a 100 mm wafer
  • Rx,Ry:-5~+5°

Fixed with rotation

Sample size

Diameter: 150 mm Thickness: 0~21 mm

Powders

Optics Incident side
  • Cross Beam Optics(CBO)
  • Ge(220)x2 monochromator
  • In-Plane Parallel Slit Collimator (PSC)
  • Soller slit
  • Variable divergence slit
  • 0.04° soller slit
  • Ni and Cu filter
  • Divergence slits
  • Beam mask
Receiver side
  • Automatic variable scattering slit
  • Automatic variable receiver slit
  • Parallel slit analysers (PSA)
  • Ge(220)x2 analyser
  • 0.04° soller slit
  • Ni filter
Substrates Measurement temperature

Room temperature

May be heated in N2 up to 500°C

Substrate size

up to 150 mm wafers

Only for powders

Allowed materials

All materials

All materials have to be approved