Template:SEM comparison table 314

From LabAdviser
Revision as of 08:21, 26 March 2020 by Afull (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Equipment Nova QFEG AFEG Helios
Purpose
  • Conductive samples in High Vac
  • Charge reduction in Low Vac
  • X Ray Analysis with EDS
  • Crystallographic analysis using EBSD and both On and Off axis TKD
  • In-situ experiments with Heating and Gas injection
  • Conductive samples in High Vac
  • Charge reduction in Low Vac
  • Environmental control using Peltier stage
  • Cryogenic sample fixing/stabilization using cryo stage
  • X Ray Analysis with EDS
  • Conductive samples in High Vac
  • Charge reduction in Low Vac
  • X Ray Analysis with EDS and WDS
  • Conductive samples in High Vac
  • Micro and Nano milling/fabrication using various gases and FIB
  • X Ray Analysis with EDS
  • Crystallographic analysis using EBSD and Off Axis TKD
Equipment position Building 314 Room 060 Building 314 Room 011 Building 314 Room 034 Building 314 Room 061
Resolution The resolution of a SEM is strongly dependent on sample type and the operator. Resolution quoted is using sputtered gold on carbon
  • High Vacuum operation in Mode II:
    • 1.0 nm at 15 kV (TLD detector and optimum working distance)
    • 1.8 nm at 1 kV (TLD detector and optimum working distance)
  • Low Vacuum operation in Mode II:
    • 1.5 nm at 10 kV (Helix detector and optimum working distance)
    • 1.8 nm at 3 kV (Helix detector and optimum working distance)
  • High vacuum
    • 0.8 nm at 30 kV (STEM)
    • 1.0 nm at 30 kV (SE)
    • 2.5 nm at 30 kV (BSE) - 3.0 nm at 1 kV (SE)
  • High vacuum with beam deceleration option
    • 3.0 nm at 1 kV (BD mode + BSE)
  • Low vacuum - 1.4 nm at 30 kV (SE)
    • 2.5 nm at 30 kV (BSE)
    • 3.0 nm at 3 kV (SE)
  • Extended vacuum mode (ESEM)
    • 1.4 nm at 30 kV (SE)
  • High vacuum
    • 0.8 nm at 30 kV (STEM)
    • 1.0 nm at 30 kV (SE)
    • 2.5 nm at 30 kV (BSE) - 3.0 nm at 1 kV (SE)
  • High vacuum with beam deceleration option
    • 3.0 nm at 1 kV (BD mode + BSE)
  • Low vacuum - 1.4 nm at 30 kV (SE)
    • 2.5 nm at 30 kV (BSE)
    • 3.0 nm at 3 kV (SE)
  • Electron Column Operation in Mode II
    • 0.8nm @15kV
    • 0.9nm @1kV
  • Ion Column
    • 4.5nm @ 30kV
Detectors
  • ETD/TLD Secondary Electrons
  • BSED Back Scatter Electrons
  • LVD/LFD Low Vac SE
  • Helix Low Vac SE
  • EDS X Ray by energy
  • EBSD Electron Back Scatter Diffraction
  • TKD Transmission Kikuchi Diffraction
  • STEM Scanning Transmission Electron Microscopy
  • GAD Low Vac BSED
  • ETD Secondary Electrons
  • BSED Back Scatter Electrons
  • LVD/LFD Low Vac SE
  • GSED ESEM SE
  • EDS X Ray by energy
  • STEM Scanning Transmission Electron Microscopy
  • ETD Secondary Electrons
  • BSED Back Scatter Electrons
  • LVD/LFD Low Vac SE
  • GSED ESEM SE
  • EDS X Ray by energy
  • STEM Scanning Transmission Electron Microscopy
  • ETD/TLD Secondary Electrons
  • ABS Annular BSED
  • EDS X Ray by energy
  • EBSD Electron Back Scatter Diffraction
  • CDEM Continuos Dinode Electron Multiplier
Stage specifications
  • X 150mm Piezo
  • Y 150mm Piezo
  • Z 10mm
  • R 360⁰ Piezo
  • T 70⁰
  • X 50mm
  • Y 50mm
  • Z 50mm
  • R 360⁰
  • T 70⁰ Manual
  • X 50mm
  • Y 50mm
  • Z 50mm
  • R 360⁰
  • T 70⁰ Manual
  • X 150mm Piezo
  • Y 150mm Piezo
  • Z 10mm
  • R 360⁰ Piezo
  • T 70⁰
Options B C D E
Max sample size Consult with DTU Nanolab staff as weight, dimensions, pumping capacity and technique all play a roll in the sample size