Specific Process Knowledge/Lithography/Pretreatment

From LabAdviser

Feedback to this page: click here

Pretreatment

All surfaces can be divided to hydrophilic or hydrophobic surfaces, where the oxidized surfaces such SiO2 or surface with native oxide formation on Si or Al substrates consider to be hydrophilic and have very bad wetting with hydrophobic resist.

Therefore it is very important to do the pretreatment step before the spinning. Here we will give an overview of treatments available at Danchip to promote photoresist adhesion.

Comparing pretreatment methods

HMDS Buffered HF-Clean Oven 250C
Generel description

Vapor priming

Oxide strip

Dehydration

Chemical

hexamethyldisilazane (HMDS)

12%HF with Ammoniumflouride

none

Etch rate range
  • ~75 nm/min (Thermal oxide) in BHF
  • ~90 nm/min (Thermal oxide) in SIO Etch
  • ~25 nm/min (Thermal oxide) in 5%HF
  • ~3-4µm/min in 40%HF
  • Process dependent
  • Tested range: ~20nm/min - ~120nm/min
  • Process dependent
  • Tested range: ~230nm/min - ~550nm/min
Substrate size
  • 50 mm wafers
  • 100 mm wafers
  • 150 mm wafers
  • 100 mm wafers
  • 100 mm wafers
  • 150 mm wafers
Allowed materials

hmds

  • Silicon
  • Poly Silicon
  • Silicon Oxide
  • Silicon Nitride
  • Silicon Oxynitride
  • Photoresist
  • Blue film
  • Silicon
  • Silicon Oxide
  • Silicon Nitride
  • Glass
Restrictions None Wafers with metal is not allowed Resist is not allowed


HMDS

Feedback to this section: click here

The chemical treatment with hexamethyldisilazane (HMDS) before the spin coating can be used to promote the adhesion for photoresist. HMDS treatment leaves a mono-layer of TMS (trimethylsilyl) on the Si or SiO2 surface.

The molecular formula for hexamethyldisilazane, or bis(trimethylsilyl)amine, is C6H19NSi2. Here is a schematic overview of HMDS treatment of silicon-oxide surface.

Priming of oxide-forming substrates by HMDS treatment.


Comparing HMDS priming

Equipment HMDS oven Spin Track 1 + 2
Purpose
  • HMDS priming
  • HMDS priming only
  • HMDS priming and spin coating
Priming chemical

hexamethyldisilizane (HMDS)

Performance Contact angle

standard recipe 82° (on SiO2)

60° - 90°; standard recipe 82° (on SiO2)

Process parameters Process temperature

150°C

50°C

Process time

32.5 minutes

3 min / wafer

Substrates Substrate size
  • 50 mm wafers
  • 100 mm wafers
  • 150 mm wafers

100 mm wafers

Allowed materials

All cleanroom materials

Silicon (with oxide, nitride, or metal films or patterning)

Glass (borosilicate and quartz)

Batch

1 - 25, multiple batches possible

1 - 25


HMDS oven

The HMDS oven is placed in Cleanroom 3.

At Danchip we use Star2000 model from IMTEC to do vapor deposition of hexamethyldisilizane (HMDS) under the special conditions: low pressure and high chamber temperature. The result of the dehydration bake and HMDS prime is that the wafers become hydrophobic after the treatment.

The user manual, user APV, and contact information can be found in LabManager:

HMDS oven in LabManager

Process information

  • Recipe 4: baseline prime process with 5 min priming time


Baseline prime process description:

1. Vacuum, 2 min

2. Nitrogen pump, 3.5 min

3. Heat- up, 10 min

4. Vacuum, 4.5 min

5. HMDS prime, 5 min

6. Vacuum chamber exhaust, 3 min

7. Nitrogen back-fill, 3.5 min

Equipment performance and process related parameters

Purpose

Promotion of photoresist adhesion

by hydrophobization

Chemical

hexamethyldisilizane

Performance Contact angle

82° (on SiO2)

Process parameters Process temperature

150 °C

Process time

32.5 minutes

Substrates Substrate size
  • 50 mm wafers
  • 100 mm wafers
  • 150 mm wafers
Allowed materials

All cleanroom materials

Batch

1 - 25, multiple batches possible


Buffered HF-Clean

BHF: positioned in cleanroom 3

Another commonly used method to render the surface of silicon wafers hydrophobic is the dilute HF dip.

BHF is mostly used to do pretreatment step for new Si wafers. The native dioxide layer will be removed during 30 sec etching and in this way we will promote the resist adhesion on the Si substrates. We recommend to spin resist asap after the procedure.

Oven 250C

250 degrees oven for pretreatment: positioned in cleanroom 3

The oven is typically used for pretreatment (dehydration) of Si and glass substrates to promote the resist adhesion. We recommend to place the wafers in metal carrier in the oven at least for 4 hours, better during the night, and spin the resist on them asap.