Specific Process Knowledge/Thin film deposition/Deposition of Nickel
Feedback to this page: click here
Nickel deposition
Nickel can be deposited by e-beam evaporation or electroplating. In the chart below you can compare the different deposition equipment.
E-beam evaporation (Alcatel) | E-beam evaporation (Wordentec) | E-beam evaporation (PVD co-sputter/evaporation) | E-beam evaporation (Physimeca) | Electroplating (Electroplating-Ni) | |
---|---|---|---|---|---|
General description | E-beam deposition of Nickel | E-beam deposition of Nickel | E-beam deposition of Nickel | E-beam deposition of Nickel | Electroplating of Nickel |
Pre-clean | RF Ar clean | RF Ar clean | RF Ar clean | None | |
Layer thickness | 10Å to 5000 Å* | 10Å to 1 µm* | 10Å to 1000 Å | 10Å to 2000 Å | A few µm to 1400 µm |
Deposition rate | 2Å/s to 15Å/s | 10Å/s to 15Å/s | About 1Å/s | 1 to 10Å/s | About 10 Å/s to 250 Å/s |
Batch size |
|
|
|
|
|
Allowed materials |
|
|
|
|
Base materials:
Seed metals:
|
Comment | Thicknesses above 2000 Å requires special permission |
|
Only very thin layers (up to 100nm). | Sample must be compatible with plating bath. Seed metal necessary. |
* To deposit layers thicker then 2000 Å permission is required (contact Thin film group)