Specific Process Knowledge/Thin film deposition/Deposition of Tantalum: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
'''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_Tantalum&action=edit click here]''' | '''Feedback to this page''': '''[mailto:labadviser@nanolab.dtu.dk?Subject=Feed%20back%20from%20page%20http://labadviser.nanolab.dtu.dk/index.php?title=Specific_Process_Knowledge/Thin_film_deposition/Deposition_of_Tantalum&action=edit click here]''' | ||
<i> Unless otherwise stated, this page is written by <b>DTU Nanolab internal</b></i> | |||
== Tantalum deposition == | == Tantalum deposition == |
Revision as of 17:09, 1 February 2023
Feedback to this page: click here
Unless otherwise stated, this page is written by DTU Nanolab internal
Tantalum deposition
Tantalum can be deposited by e-beam evaporation and sputter deposition. In the chart below you can compare the different deposition equipment.
Sputtering of Tantalum
You can read more about Ta sputter deposition using Sputter-System(Lesker)
E-beam evaporation of Tantalum
Tantalum can be deposited by e-beam assisted evaporation in the Temescal tool.
E-beam evaporation (Temescal) | Sputter (Lesker) | Sputter deposition (Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3)) | |
---|---|---|---|
General description | E-beam deposition of Ta
(line-of-sight deposition) |
Sputter deposition of Ta
(not line-of-sight) |
Sputter deposition of Ta
(not line-of-sight) |
Pre-clean | Ar ion source | RF Ar clean | RF Ar clean |
Layer thickness | 10Å to 0.2 µm* | 10Å to ? | 10Å to ? |
Deposition rate | 0.5Å/s to 10Å/s | ~0.3Å/s | Not been tested |
Batch size |
|
|
|
Allowed materials |
|
|
|
Comment | Tantalum deposition heats the chamber* | 3-inch Ta target |
* The max thickness is limited to 200 nm as Ta deposition heats the chamber. If you wish to deposit more than that, it has to be done in several steps. The temperature on the back of a Si wafer rose to above 160 °C during deposition of 40 nm Ta even when using a cooling plate. If you wish to e-beam deposit Ta, please contact the Thin film group.