Specific Process Knowledge/Thin film deposition/Deposition of Nickel: Difference between revisions

From LabAdviser
Jump to navigation Jump to search
m (→‎Nickel deposition: about allowed materials in lesker)
m (→‎Nickel deposition: cluster sputter name)
Line 16: Line 16:
! E-beam evaporation ([[Specific Process Knowledge/Thin film deposition/Physimeca|Physimeca]])
! E-beam evaporation ([[Specific Process Knowledge/Thin film deposition/Physimeca|Physimeca]])
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Lesker|Lesker]])
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Lesker|Lesker]])
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Cluster-based_multi-chamber_high_vacuum_sputtering_deposition_system#Process_information|Cluster-based sputter system]])
! Sputter deposition ([[Specific Process Knowledge/Thin film deposition/Cluster-based multi-chamber high vacuum sputtering deposition system|Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3)]])
! Electroplating ([[Specific Process Knowledge/Thin film deposition/Electroplating-Ni|Electroplating-Ni]])
! Electroplating ([[Specific Process Knowledge/Thin film deposition/Electroplating-Ni|Electroplating-Ni]])
|-  
|-  

Revision as of 00:24, 9 August 2020

Feedback to this page: click here

Nickel deposition

Nickel can be deposited by e-beam evaporation, sputtering or electroplating. In the chart below you can compare the different deposition equipment.


E-beam evaporation (Temescal) E-beam evaporation (Wordentec) E-beam evaporation (Physimeca) Sputter deposition (Lesker) Sputter deposition (Sputter-system Metal-Oxide (PC1) and Sputter-system Metal-Nitride (PC3)) Electroplating (Electroplating-Ni)
General description E-beam deposition of Nickel E-beam deposition of Nickel E-beam deposition of Nickel Sputter deposition of Nickel Sputter deposition of Nickel Electroplating of Nickel
Pre-clean Ar ion bombardment RF Ar clean RF Ar clean RF Ar clean None
Layer thickness 10 Å to 1 µm * 10 Å to 1 µm * 10 Å to 2000 Å 10 Å to 5000 Å ** 10 Å to 5000 Å ** ~ 20 µm to ~ 1000 µm
Deposition rate 2-10 Å/s 10-15 Å/s 1-10 Å/s Depends on process parameters, about 1 Å/s Depends on process parameters, at least ~ 4 Å/s, see conditions here ~ 10-250 Å/s
Batch size
  • Up to 4x6" wafers
  • Up to 3x8" wafers (ask for holder)
  • Many smaller pieces
  • 24x2" wafers or
  • 6x4" wafers or
  • 6x6" wafers
  • 1x 2" wafer or
  • 1x 4" wafers or
  • Several smaller pieces
  • Pieces or
  • 1x4" wafer or
  • 1x6" wafer
  • Up to 10x4" or 6" wafers
  • Many smaller pieces
  • 1x2" wafer or
  • 1x4" wafer or
  • 1x6" wafer
Allowed materials
  • Silicon
  • Silicon oxide
  • Silicon nitride
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Silicon
  • Silicon oxide
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Metals
  • Almost any that do not outgas.
  • Almost any that do not outgas. Check the cross-contamination sheets in Labmanager.

Base materials:

  • Silicon
  • Polymers with Tg > 75°C
  • Metals (bulk)
  • Cross-linked or hard baked resists supported by one of the above mentioned materials

Seed metals:

  • NiV (75 - 100 nm recommended)
  • Ti (~5 nm) + Au (75-100 nm recommended)
  • Cr (~5 nm) + Au (75-100 nm recommended)
  • TiW
  • Cr
Comment
  • May use high-strength magnet for deposition.
  • May use high-strength magnet for deposition
  • Sample must be compatible with plating bath (pH = 3,65 and T = 52°C). Seed metal necessary.

* To deposit a cumulative thickness above 600 nm permission is required from metal@nanolab.dtu.dk to ensure enough material is present in the machine


** To deposit a cumulative thickness above 200 nm permission is required from metal@nanolab.dtu.dk to ensure enough material is present in the machine