Specific Process Knowledge/Thin film deposition/Deposition of Aluminium: Difference between revisions

From LabAdviser
Mdyma (talk | contribs)
Reet (talk | contribs)
Line 75: Line 75:
|Depending on [[/Sputter rates for Al|process parameters]], up to ~2.5 Å/s
|Depending on [[/Sputter rates for Al|process parameters]], up to ~2.5 Å/s
|~1.5Å/s to 2Å/s
|~1.5Å/s to 2Å/s
|~0.5Å/s to 2Å/s
|1 Å/s
|-
|-
|-style="background:WhiteSmoke; color:black"
|-style="background:WhiteSmoke; color:black"

Revision as of 15:26, 5 July 2018


Feedback to this page: click here


Deposition of Aluminium

Aluminium can be deposited by e-beam evaporation, by sputtering and by thermal evaporation. In the chart below you can compare the different methods on the different deposition equipment.


Sputtering of Aluminium

Aluminium may be sputter deposited in either Wordentec of PVD co-sputter/evaporation

Thermal deposition of Aluminium

In Wordentec Aluminium can be deposited by Thermal deposition



E-beam evaporation (Alcatel) E-beam evaporation (Wordentec) Sputter deposition (Wordentec) Thermal evaporation (Wordentec) Thermal evaporation (Thermal Evaporator)
General description

E-beam deposition of Aluminium

E-beam deposition of Aluminium

Sputter deposition of Aluminium

Aluminum deposition onto unexposed e-beam resist

Aluminum deposition onto unexposed e-beam resist

Pre-clean RF Ar clean RF Ar clean RF Ar clean RF Ar clean None
Layer thickness 10Å to 1µm* 10Å to 1 µm* 10Å to ~0.5µm (very time consuming ) 10Å to 0.5 µm (this uses all Al in the boat) 10Å to 0.5 µm
Deposition rate 2Å/s to 15Å/s 10Å/s to 15Å/s Depending on process parameters, up to ~2.5 Å/s ~1.5Å/s to 2Å/s 1 Å/s
Batch size
  • Up to 1x4" wafers
  • smaller pieces
  • 24x2" wafers or
  • 6x4" wafers or
  • 6x6" wafers
  • 24x2" wafers or
  • 6x4" wafers or
  • 6x6" wafers
  • 24x2" wafers or
  • 6x4" wafers or
  • 6x6" wafers
  • Up to one 8" wafer
Allowed substrates
  • Silicon wafers
  • Quartz wafers
  • Pyrex wafers
  • Silicon wafers
  • Quartz wafers
  • Pyrex wafers


  • Silicon wafers
  • Quartz wafers
  • Pyrex wafers
  • Silicon wafers
  • Quartz wafers
  • Pyrex wafers
  • Silicon wafers
  • Quartz wafers
  • Pyrex wafers


Allowed materials
  • Silicon oxide
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Metals


  • Silicon oxide
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Metals


  • Silicon oxide
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Metals


  • Silicon oxide
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Metals
  • Silicon oxide
  • Silicon (oxy)nitride
  • Photoresist
  • PMMA
  • Mylar
  • SU-8
  • Metals
Comment Thickness above 200 nm: ask for permission Thickness above 200 nm: ask for permission   Thickness above 200 nm: ask for permission Thickness above 200 nm: ask for permission

* For thicknesses above 200 nm permission from ThinFilm group (thinfilm@danchip.dtu.dk) is required.

Aluminium deposition on ZEP520A for lift-off

This is a small study of which aluminium deposition that is best for aluminium lift-off on ZEP520A resist and a very thin layer of aluminium (~20nm).

The conclusion was that e-beam evaporation of aluminium in the Alcatel at 15Å/s gave the best result.

See details of the study here.


Aluminium deposition on AZ5214 for lift-off

Negative photolithographi process is recomended.

Positive photolithographi process from 1,5µ is possible especially for thin layers of metal.

The more pattern the easyer lift.


It was tried(jan09) to lift 2,5µ Al on 4,2µ negative resist on top of 11µ Apox SiO2 in acetone sonic-bath. This process was done in steps evaporating 5000Å a time with 5min pause and pressure down to at least 2E-6.


Comparison of roughness and other surface characteristics for different methods of Aluminium deposition

Studies by AFM was performed to examine differences in characteristics of the Al films, deposited with the differnt methods (sputter, e-beam, thermal). See details of the study here.