Specific Process Knowledge/Lithography/EBeamLithography: Difference between revisions

From LabAdviser
Tigre (talk | contribs)
Tigre (talk | contribs)
Line 231: Line 231:
* trilayer flow, not tested
* trilayer flow, not tested


[[http://avspublications.org/jvst/resource/1/jvstal/v19/i4/p1304_s1]]
A trilayer stack with Ge: [[http://avspublications.org/jvst/resource/1/jvstal/v19/i4/p1304_s1]]


= Charge dissipating agent =
= Charge dissipating agent =
* Al coating, FLOW
* Al coating, FLOW
* ESPACER, no flow yet
* ESPACER, no flow yet

Revision as of 13:03, 7 August 2013

The JEOL JBX-9500 electron beam lithography system is a spot electron beam type lithography system designed for writing patterns with dimensions from nanometers to sub-micrometers. The minimum electron beam is around 12 nm, the maximum writitng field without stitching is 1 mm x 1 mm.

The machine is located in a class 10 cleanroom (E-2) with tight temperature and moisture control. The room must only be entered when the machines or equipment inside the room is intended to be used.


Performance of the e-beam writer

Purpose pattern an electron sensitive resist Mainly for pattering structures with minimum feature size between 20 nm - 1 µm
Performance Resolution
  • Minimum electron-beam size: 12 nm
Maximum writing area without stitching
  • 1mm x 1mm
Process parameter range E-beam voltage
  • 100kV
Scanning speed
  • 100MHz
Min. electron beam size
  • 10nm
Min. step size
  • 1nm
Beam current range
  • 0.1nA to 60nA in normal conditions (see available condition files here)
Dose range
  • 0.001µC/cm2 to 100000µC/cm2
Samples Batch size

Wafer cassettes:

  • 6 x 2" wafers
  • 2 x 4" wafers
  • 1 x 6" wafer
  • Special wafer cassette with slit openings of 20 mm (position A), 12 mm (position B), 8 mm (position C) and 4 mm (position D).
Substrate material allowed
  • Silicon wafers
  • Wafers with layers of silicon oxide or silicon (oxy)nitride
  • Wafers with layers of metal
  • III-V materials
  • Quartz wafers
  • Pyrex wafers

Getting started

Only DTU Danchip personnel is allowed to load or unload cassettes to or from the machine

To request a training session or a time-slot for the e-beam, contact the e-beam team via this link: e-beam@danchip.dtu.dk'

You need 3-4 training sessions before being allowed to use the e-beam writer. You can get training in loading and unloading samples into a cassette, to optically pre-align the samples, to calibrate the writer, to perform 2nd alignment and start exposure. For safety reasons, the costumer is however not allowed to load or unload cassettes to or from the e-beam writer.

Before you request for a training, it is crucial to have your pattern ready in either tdb-format or GDSII format. Also, check your pattern in e.g. CleWin before requesting. In order to reach the files from the computers inside the cleanroom, it is recommended to either dropbox them or send them per email to yourself.

It is also recommended to gather as much knowledge about your e-beam run from your colleagues, i.e. which e-beam current, aperture and dose to use, which shot pitch (e.g. SHOT A,10). In order to get an overview of what an e-beam process requires, it is recommended to a assist a fully trained colleague of yours when she or he e-beam writes. Furthermore, please read the e-beam manual for more information on which parameters to use.


There are 3 manuals for the e-beam writer:

  • A user manual describing the standard procedure when e-beam writing
  • A jdf-, and sdf-file manual describing how to prepare sdf-, and jdf-files (found under 'Technical Documents')
  • A BEAMER manual describing how to convert your pattern file (GDSII-format) to v30-format (found under 'Technical Documents')


On the L-drive, a logbook for the e-beam writer can be found. Sheet 1 gives you an overview of which condition files (currents and apertures) have been in use recently by which user on which type of resist. On sheet 2 in this logbook you can find a writing time estimation program; please use this prior to requesting e-beam sessions. If in doubt how to use it, contact the e-beam team at [1].

Process Flows

Resist Polarity Manufacturer Comments Technical reports Spinner Developer Rinse Remover Process flows (in docx-format)
ZEP520A Positive ZEON Standard positive resist ZEP520A.pdf SSE, Manual Spinner 1 (Laurell), III-V Spinner ZED-N50/Hexyl Acetate,n-amyl acetate, oxylene. JJAP-51-06FC05.pdf‎, JVB001037.pdf‎ IPA acetone/1165 Process_Flow_ZEP.docx


ZEP7000 Positive ZEON Low dose to clear. Used for trilayer (PEC-free) resist-stack. Please contact [Lithography] for information. ZEP7000.pdf Manual Spinner 1 (Laurell), III-V Spinner ZED-N50/Hexyl Acetate,n-amyl acetate, oxylene. JJAP-51-06FC05.pdf‎, JVB001037.pdf‎ IPA acetone/1165 Trilayer stack: Process_Flow_Trilayer_Ebeam_Resist.docx‎
PMMA Positive We have various types of PMMA in the cleanroom, none are provided by DTU Danchip. Please contact [Lithography] for information. Manual Spinner 1 (Laurell), III-V Spinner MIBK:IPA (1:3), IPA:H2O IPA acetone/1165/Pirahna
MMA (AR-P 617.05) Positive AllResist Approved, not tested yet. Used for trilayer (PEC-free) resist-stack or double-layer lift-off resist stack. Please contact [Lithography] for information. AR_P617.pdf‎ Manual Spinner 1 (Laurell), III-V Spinner AR600-55, MIBK:IPA acetone/1165 Trilayer stack: Process_Flow_Trilayer_Ebeam_Resist.docx‎


CSAR Positive AllResist Approved, not tested yet. Should work similar to ZEP520A. Please contact [Lithography] for information. CSAR_62_and_process_chemicals.pdf‎ Manual Spinner 1 (Laurell), III-V Spinner X AR 600-54/6, MIBK:IPA H2O Process_Flow_CSAR.docx‎
HSQ (XR-1541) Negative DOW Corning III-V Spinner TMAH, AZ400K:H2O H2O


ma-N 2403 Negative Micro Resist III-V Spinner Ma-D333, TMAH, MIF726 H2O acteone/O2 plasma
AR-N 7520 Negative AllResist Both e-beam, DUV and UV-sensitive resist. Currently being tested, contact [Peixiong Shi] for information. AR-N7500-7520.pdf‎ Manual Spinner 1 (Laurell), III-V Spinner


Proximity Error Correction

  • PEC in BEAMER


  • trilayer flow, not tested

A trilayer stack with Ge: [[2]]

Charge dissipating agent

  • Al coating, FLOW
  • ESPACER, no flow yet